Physiological and biochemical adaptations in lentil genotypes under drought stress

Physiological and biochemical adaptations in lentil genotypes under drought stress Drought is a major restrictive factor for declining grain yield in lentil globally. Present investigation was conducted by taking microsperma (HUL-57) and macrosperma (IPL-406) genotypes of lentil (Lens culinaris Medik.) as information regarding physiological and biochemical basis of differences in drought resistance in macrosperma (bold-seeded) and microsperma (small-seeded) are not well understood. Pot grown plants were exposed to drought stress at specific phenophase viz. mid-vegetative, flower initiation and pod formation stage by withholding irrigation till the plants experienced one cycle of permanent wilting (PWP). Genotypes exhibited substantial differences for most of the measured traits under drought irrespective of the phenophase of stress imposed. Under drought HUL-57 had lower CMI, higher CSI, lower values of Δ13C, maintained higher SLN, accumulated more N and efficiently remobilized accumulated N to developing seeds. Higher chlorophyll content, increased accumulation of osmotically active solutes viz. soluble sugars and proline under drought stress was evident in HUL-57. Drought induced H2O2 accumulation and lipid peroxidation in both genotypes, but increments were of lesser magnitudes in HUL-57. Drought stress of pod formation stage followed by flower initiation stage was most damaging than the stress imposed at mid-vegetative stage in both genotypes. HUL-57 showed a better drought resistance capacity than IPL-406. Drought indices viz. DSI, STI and MP are proposed as criterion to identify and breed lentil genotypes for drought conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Physiological and biochemical adaptations in lentil genotypes under drought stress

Loading next page...
 
/lp/springer_journal/physiological-and-biochemical-adaptations-in-lentil-genotypes-under-icCROLVmQu
Publisher
Pleiades Publishing
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443716040117
Publisher site
See Article on Publisher Site

Abstract

Drought is a major restrictive factor for declining grain yield in lentil globally. Present investigation was conducted by taking microsperma (HUL-57) and macrosperma (IPL-406) genotypes of lentil (Lens culinaris Medik.) as information regarding physiological and biochemical basis of differences in drought resistance in macrosperma (bold-seeded) and microsperma (small-seeded) are not well understood. Pot grown plants were exposed to drought stress at specific phenophase viz. mid-vegetative, flower initiation and pod formation stage by withholding irrigation till the plants experienced one cycle of permanent wilting (PWP). Genotypes exhibited substantial differences for most of the measured traits under drought irrespective of the phenophase of stress imposed. Under drought HUL-57 had lower CMI, higher CSI, lower values of Δ13C, maintained higher SLN, accumulated more N and efficiently remobilized accumulated N to developing seeds. Higher chlorophyll content, increased accumulation of osmotically active solutes viz. soluble sugars and proline under drought stress was evident in HUL-57. Drought induced H2O2 accumulation and lipid peroxidation in both genotypes, but increments were of lesser magnitudes in HUL-57. Drought stress of pod formation stage followed by flower initiation stage was most damaging than the stress imposed at mid-vegetative stage in both genotypes. HUL-57 showed a better drought resistance capacity than IPL-406. Drought indices viz. DSI, STI and MP are proposed as criterion to identify and breed lentil genotypes for drought conditions.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Aug 11, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off