Physical, chemical, and regulatory properties of glycolate oxidase in C3 and C4 plants

Physical, chemical, and regulatory properties of glycolate oxidase in C3 and C4 plants Physical, chemical, and regulatory properties of glycolate oxidase (GO) isolated from the leaves of C4 and C3 plants (Zea mays L., cv. Voronezhskaya 76 and Glycine max (L.) Merr., cv. Pripyat’, respectively) were studied. The homogenous preparations were obtained by multistage enzyme purification from soybean leaves and maize mesophyll and bundle sheath. The glycolate oxidase (GO) preparations obtained consisted of two types of subunits, 37 and 44 kD. The GO isolated from C3 plant leaves had many in common with that extracted from C4 plant bundle sheath as regards physical, chemical, and catalytic properties. The primary function of GO in both plant types is metabolism of glycolate, which is a product of ribulosebisphosphate oxalacetic acid oxidation and is used by plants for biosynthesis of hydrocarbons and amino acids. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Physical, chemical, and regulatory properties of glycolate oxidase in C3 and C4 plants

Loading next page...
 
/lp/springer_journal/physical-chemical-and-regulatory-properties-of-glycolate-oxidase-in-c3-xGNjl1Cf84
Publisher
Springer Journals
Copyright
Copyright © 2009 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Sciences ; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443709020034
Publisher site
See Article on Publisher Site

Abstract

Physical, chemical, and regulatory properties of glycolate oxidase (GO) isolated from the leaves of C4 and C3 plants (Zea mays L., cv. Voronezhskaya 76 and Glycine max (L.) Merr., cv. Pripyat’, respectively) were studied. The homogenous preparations were obtained by multistage enzyme purification from soybean leaves and maize mesophyll and bundle sheath. The glycolate oxidase (GO) preparations obtained consisted of two types of subunits, 37 and 44 kD. The GO isolated from C3 plant leaves had many in common with that extracted from C4 plant bundle sheath as regards physical, chemical, and catalytic properties. The primary function of GO in both plant types is metabolism of glycolate, which is a product of ribulosebisphosphate oxalacetic acid oxidation and is used by plants for biosynthesis of hydrocarbons and amino acids.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Mar 31, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off