Physical Characterization of Bacterial Cellulose Produced by Komagataeibacter medellinensis Using Food Supply Chain Waste and Agricultural By-Products as Alternative Low-Cost Feedstocks

Physical Characterization of Bacterial Cellulose Produced by Komagataeibacter medellinensis Using... Bacterial cellulose (BC), which is a hemicellulose- and lignin-free type of cellulose with unique properties, was produced by Komagataeibacter medellinensis, a new acid-resistant bacterial strain, using not suitable human consumption and sub-valorized food supply chain waste (FSCW) and agricultural by-products, namely, rotten banana, rotten mango and cheese whey. The BC was analyzed using Fourier transform infrared (ATR-FTIR) , tensile test, atomic absorption spectroscopy and thermogravimetric analysis. The properties of the BC obtained from each culture medium used were different, ranging from a material with high resistance and stiffness (280.6 MPa, 9.4 GPa) to a material with low resistance and less stiffness (17.7 MPa, 0.8 GPa). These properties provide considerable opportunities for obtaining different materials with multiple applications, such as composite reinforcements, wound dressings and edible films. The highest production of BC was achieved with rotten banana medium, and this BC also had the highest tensile properties. Meanwhile, the BC produced from cheese whey medium had the highest maximum rate of degradation temperature at 368 °C. This research demonstrated that FSCW and agrowaste by-products are advantageous alternative feedstocks in terms of economics and environmental concerns for producing BC with multiple properties and fields of application. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Polymers and the Environment Springer Journals

Physical Characterization of Bacterial Cellulose Produced by Komagataeibacter medellinensis Using Food Supply Chain Waste and Agricultural By-Products as Alternative Low-Cost Feedstocks

Loading next page...
 
/lp/springer_journal/physical-characterization-of-bacterial-cellulose-produced-by-q9aL3xD2Wx
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Chemistry; Polymer Sciences; Environmental Chemistry; Materials Science, general; Environmental Engineering/Biotechnology; Industrial Chemistry/Chemical Engineering
ISSN
1566-2543
eISSN
1572-8900
D.O.I.
10.1007/s10924-017-0993-6
Publisher site
See Article on Publisher Site

Abstract

Bacterial cellulose (BC), which is a hemicellulose- and lignin-free type of cellulose with unique properties, was produced by Komagataeibacter medellinensis, a new acid-resistant bacterial strain, using not suitable human consumption and sub-valorized food supply chain waste (FSCW) and agricultural by-products, namely, rotten banana, rotten mango and cheese whey. The BC was analyzed using Fourier transform infrared (ATR-FTIR) , tensile test, atomic absorption spectroscopy and thermogravimetric analysis. The properties of the BC obtained from each culture medium used were different, ranging from a material with high resistance and stiffness (280.6 MPa, 9.4 GPa) to a material with low resistance and less stiffness (17.7 MPa, 0.8 GPa). These properties provide considerable opportunities for obtaining different materials with multiple applications, such as composite reinforcements, wound dressings and edible films. The highest production of BC was achieved with rotten banana medium, and this BC also had the highest tensile properties. Meanwhile, the BC produced from cheese whey medium had the highest maximum rate of degradation temperature at 368 °C. This research demonstrated that FSCW and agrowaste by-products are advantageous alternative feedstocks in terms of economics and environmental concerns for producing BC with multiple properties and fields of application.

Journal

Journal of Polymers and the EnvironmentSpringer Journals

Published: Mar 25, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off