Phylogeography of rare fern Polystichum glaciale endemic to the subnival zone of the Sino-Himalaya

Phylogeography of rare fern Polystichum glaciale endemic to the subnival zone of the Sino-Himalaya Previous phylogeographical studies of the Sino-Himalaya (SH) regions have mainly focused on seed plants from forest or alpine grassland habitats, whereas the flora of the subnival summits, especially the ferns, has largely been ignored. Here, we report on phylogeographical studies on Polystichum glaciale, a rare fern endemic to the subnival belt of the SH region. Based on cpDNA/nDNA sequences, strikingly rich genetic diversity was detected in P. glaciale. Combined with the lack of ‘isolation by distance’ and the major genetic differentiation among populations revealed by AMOVA, they collectively suggested that P. glaciale exhibited island-like population genetic structure. Phylogeographical structure with two genetic groups (N vs. S) was further identified in P. glaciale by the SAMOVA based on cpDNA data, of which the geographical pattern was mainly associated with the biogeographical boundary between the northern and southern Hengduan Mountains at 29°N latitude. We concluded that extremely complex topography of SH region and highly fragmented subnival habitat have played a critical role in shaping phylogeographical structure and genetic differentiation of P. glaciale. Mismatch distribution analyses and ecological niche modelling suggested P. glaciale has undergone north-westward retreat after the LGM. Predictions of its future distribution indicated the possibility of compression within suitable subnival habitats. We suggest in situ conservation should be urgently implemented to preserve this rare fern. Our results represent a first framework for a comprehensive understanding of the biogeographical history of fern species associated with the subnival belt of the SH region and the effects of historical events on its genetic architecture. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Systematics and Evolution Springer Journals

Phylogeography of rare fern Polystichum glaciale endemic to the subnival zone of the Sino-Himalaya

Loading next page...
 
/lp/springer_journal/phylogeography-of-rare-fern-polystichum-glaciale-endemic-to-the-SKbi2xjBF7
Publisher
Springer Vienna
Copyright
Copyright © 2018 by Springer-Verlag GmbH Austria, part of Springer Nature
Subject
Life Sciences; Plant Sciences; Plant Ecology; Plant Anatomy/Development; Plant Systematics/Taxonomy/Biogeography
ISSN
0378-2697
eISSN
2199-6881
D.O.I.
10.1007/s00606-018-1495-2
Publisher site
See Article on Publisher Site

Abstract

Previous phylogeographical studies of the Sino-Himalaya (SH) regions have mainly focused on seed plants from forest or alpine grassland habitats, whereas the flora of the subnival summits, especially the ferns, has largely been ignored. Here, we report on phylogeographical studies on Polystichum glaciale, a rare fern endemic to the subnival belt of the SH region. Based on cpDNA/nDNA sequences, strikingly rich genetic diversity was detected in P. glaciale. Combined with the lack of ‘isolation by distance’ and the major genetic differentiation among populations revealed by AMOVA, they collectively suggested that P. glaciale exhibited island-like population genetic structure. Phylogeographical structure with two genetic groups (N vs. S) was further identified in P. glaciale by the SAMOVA based on cpDNA data, of which the geographical pattern was mainly associated with the biogeographical boundary between the northern and southern Hengduan Mountains at 29°N latitude. We concluded that extremely complex topography of SH region and highly fragmented subnival habitat have played a critical role in shaping phylogeographical structure and genetic differentiation of P. glaciale. Mismatch distribution analyses and ecological niche modelling suggested P. glaciale has undergone north-westward retreat after the LGM. Predictions of its future distribution indicated the possibility of compression within suitable subnival habitats. We suggest in situ conservation should be urgently implemented to preserve this rare fern. Our results represent a first framework for a comprehensive understanding of the biogeographical history of fern species associated with the subnival belt of the SH region and the effects of historical events on its genetic architecture.

Journal

Plant Systematics and EvolutionSpringer Journals

Published: Jan 23, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off