Photosynthetic response of Chlamydomonas reinhardtii to short-term storage on ice in darkness. Dependence of the response on growth conditions

Photosynthetic response of Chlamydomonas reinhardtii to short-term storage on ice in darkness.... The effect of storage of the unicellular green alga Chlamydomonas reinhardtii (strain 137+) in the pelleted state in darkness on ice (0.2–0.5°C) (further simply “SPDI-treatment”) on its photosynthetic and respiratory activities was studied. To this end, the steady-state rates of O2 exchange in darkness (dark respiration) and under saturating light (apparent photosynthesis) as well as the induction periods (IP) of apparent photosynthesis were measured at 25°C in the SPDI-untreated and SPDI-treated for the period from ∼0.5 to ∼30 h algal cells. In contrast to expectations, the SPDI-treatment consistently affected the rate and IP of photosynthesis depending on the physiological state of C. reinhardtii. Dark respiration was affected by the SPDI-treatment as well. However, in absolute values the respiratory changes were much less than the photosynthetic ones, and they were insufficiently reproducible. The SPDI-treatment affected photosynthesis most significantly in high-CO2-grown cells (cells grown at 5% CO2 in white light). The rate of photosynthesis in these cells declined quasi-exponentially as a function of time during the SPDI-treatment with a t 1/2 ∼1.5 h and finally became by about 60% lower than that before the SPDI-treatment. This decline of photosynthesis was accompanied by continuous and essential increase in the photosynthetic IP. The SPDI-induced photosynthetic changes in high-CO2-grown cells resulted from the firm disfunction of the photosynthetic apparatus. After switch from growth at 5% CO2 in white light to growth at ∼0.03% CO2 (air) in white, blue, or red light, the alga gradually transited to a physiological state, in which the negative effects of the SPDI-treatment on the rate and IP of photosynthesis became weak and absent, respectively. Remarkably, this transition was faster in blue (≤5 h) than in white and red light (>10 h). Similar changes in the response of the alga to the SPDI-treatment occurred when high-CO2-grown cells (5% CO2, white light, 26°C) were incubated in darkness (air, 24–26°C) for 20–25 h. The results of study were analyzed in the light of literature data relating to the effects of CO2 concentration, darkness, and light quality on carbohydrates in plant organisms. The analysis led to suggestion that there is connection between the negative effect of the SPDI-treatment on C. reinhardtii and nonstructural carbohydrates presented in the alga: the more carbohydrates contain the alga, the more extensive inactivation of the photosynthetic apparatus occurs in it during its storage in the dense (pelleted) state in darkness on ice. Russian Journal of Plant Physiology Springer Journals

Photosynthetic response of Chlamydomonas reinhardtii to short-term storage on ice in darkness. Dependence of the response on growth conditions

Loading next page...
SP MAIK Nauka/Interperiodica
Copyright © 2013 by Pleiades Publishing, Ltd.
Life Sciences; Plant Physiology; Plant Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial