Photosynthetic rate and lectin activity of soybean leaves after inoculation with rhizobia together with homologous lectin

Photosynthetic rate and lectin activity of soybean leaves after inoculation with rhizobia... Nodule bacteria (Bradyrhizobium japonicum) of various activities were preincubated with homologous lectin and then used for inoculating soybean (Glycine max (L.) Merrill) seeds. The effect of this inoculation on the photosynthetic rate, lectin activity in leaves, and plant development at different supply of mineral nitrogen was investigated under the conditions of pot experiments. There was a positive relationship between the photosynthetic rate and the lectin activity of proteins isolated from soybean leaves. Under the conditions of effective symbiosis, activation of functioning of the symbiotic apparatus by preincubation of the rhizobia with lectin exerted an additional stimulating effect on the photosynthetic rate. It is suggested that a relationship between the effectiveness of legume-rhizobium symbiosis and the lectin activity in leaves is mediated by the regulation of photosynthesis through a demand for assimilates in the source-sink system of soybean plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Photosynthetic rate and lectin activity of soybean leaves after inoculation with rhizobia together with homologous lectin

Loading next page...
 
/lp/springer_journal/photosynthetic-rate-and-lectin-activity-of-soybean-leaves-after-tq5iB9vOjk
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2006 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S102144370602004X
Publisher site
See Article on Publisher Site

Abstract

Nodule bacteria (Bradyrhizobium japonicum) of various activities were preincubated with homologous lectin and then used for inoculating soybean (Glycine max (L.) Merrill) seeds. The effect of this inoculation on the photosynthetic rate, lectin activity in leaves, and plant development at different supply of mineral nitrogen was investigated under the conditions of pot experiments. There was a positive relationship between the photosynthetic rate and the lectin activity of proteins isolated from soybean leaves. Under the conditions of effective symbiosis, activation of functioning of the symbiotic apparatus by preincubation of the rhizobia with lectin exerted an additional stimulating effect on the photosynthetic rate. It is suggested that a relationship between the effectiveness of legume-rhizobium symbiosis and the lectin activity in leaves is mediated by the regulation of photosynthesis through a demand for assimilates in the source-sink system of soybean plants.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Mar 24, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off