Photosynthetic rate and lectin activity of soybean leaves after inoculation with rhizobia together with homologous lectin

Photosynthetic rate and lectin activity of soybean leaves after inoculation with rhizobia... Nodule bacteria (Bradyrhizobium japonicum) of various activities were preincubated with homologous lectin and then used for inoculating soybean (Glycine max (L.) Merrill) seeds. The effect of this inoculation on the photosynthetic rate, lectin activity in leaves, and plant development at different supply of mineral nitrogen was investigated under the conditions of pot experiments. There was a positive relationship between the photosynthetic rate and the lectin activity of proteins isolated from soybean leaves. Under the conditions of effective symbiosis, activation of functioning of the symbiotic apparatus by preincubation of the rhizobia with lectin exerted an additional stimulating effect on the photosynthetic rate. It is suggested that a relationship between the effectiveness of legume-rhizobium symbiosis and the lectin activity in leaves is mediated by the regulation of photosynthesis through a demand for assimilates in the source-sink system of soybean plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Photosynthetic rate and lectin activity of soybean leaves after inoculation with rhizobia together with homologous lectin

Loading next page...
 
/lp/springer_journal/photosynthetic-rate-and-lectin-activity-of-soybean-leaves-after-tq5iB9vOjk
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2006 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S102144370602004X
Publisher site
See Article on Publisher Site

Abstract

Nodule bacteria (Bradyrhizobium japonicum) of various activities were preincubated with homologous lectin and then used for inoculating soybean (Glycine max (L.) Merrill) seeds. The effect of this inoculation on the photosynthetic rate, lectin activity in leaves, and plant development at different supply of mineral nitrogen was investigated under the conditions of pot experiments. There was a positive relationship between the photosynthetic rate and the lectin activity of proteins isolated from soybean leaves. Under the conditions of effective symbiosis, activation of functioning of the symbiotic apparatus by preincubation of the rhizobia with lectin exerted an additional stimulating effect on the photosynthetic rate. It is suggested that a relationship between the effectiveness of legume-rhizobium symbiosis and the lectin activity in leaves is mediated by the regulation of photosynthesis through a demand for assimilates in the source-sink system of soybean plants.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Mar 24, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off