Photosynthetic characteristics and antioxidant enzyme system in high-chlorophyll rice Gc mutant

Photosynthetic characteristics and antioxidant enzyme system in high-chlorophyll rice Gc mutant The physiological photosynthetic characteristics and antioxidant enzyme system of the high-chlorophyll rice (Oryza sativa L.) mutant (Gc) and its wild type (Zhenshan 97B) were compared and analyzed. Resulting data showed that the total chlorophyll (Chl) and Chl b contents in the Gc mutant were significantly increased by 19.0 and 81.7%, respectively, while the increase in Chl a and thylakoid membrane protein contents was insignificant. The net photosynthetic rate (P N) was significantly higher in the mutant; stomatal conductance, intercellular CO2 concentration, and transpiration rate decreased significantly, and water-use efficiency increased significantly, indicating the higher photochemical efficiency of the mutant. The chlorophyll fluorescence parameters: electron transport rate and effective quantum yield of PSII photochemistry of the mutant were significantly higher than those of Zhenshan 97B. The nonphotochemical quenching of the mutant under light adaptation increased by 52.3%. The enzymatic activity of superoxide dismutase, peroxidas, and catalase in the mutant roots and leaves were all higher than those for the wild-type plants. It is believed that the higher activity of antioxidant enzymes in the mutant may be an important factor making difficult the photo-inactivation of Chl, and thus, increasing the content of Chl, especially Chl b. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Photosynthetic characteristics and antioxidant enzyme system in high-chlorophyll rice Gc mutant

Loading next page...
 
/lp/springer_journal/photosynthetic-characteristics-and-antioxidant-enzyme-system-in-high-0vwws8Dxev
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2012 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443712050123
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial