Photosynthetic characteristics and antioxidant enzyme system in high-chlorophyll rice Gc mutant

Photosynthetic characteristics and antioxidant enzyme system in high-chlorophyll rice Gc mutant The physiological photosynthetic characteristics and antioxidant enzyme system of the high-chlorophyll rice (Oryza sativa L.) mutant (Gc) and its wild type (Zhenshan 97B) were compared and analyzed. Resulting data showed that the total chlorophyll (Chl) and Chl b contents in the Gc mutant were significantly increased by 19.0 and 81.7%, respectively, while the increase in Chl a and thylakoid membrane protein contents was insignificant. The net photosynthetic rate (P N) was significantly higher in the mutant; stomatal conductance, intercellular CO2 concentration, and transpiration rate decreased significantly, and water-use efficiency increased significantly, indicating the higher photochemical efficiency of the mutant. The chlorophyll fluorescence parameters: electron transport rate and effective quantum yield of PSII photochemistry of the mutant were significantly higher than those of Zhenshan 97B. The nonphotochemical quenching of the mutant under light adaptation increased by 52.3%. The enzymatic activity of superoxide dismutase, peroxidas, and catalase in the mutant roots and leaves were all higher than those for the wild-type plants. It is believed that the higher activity of antioxidant enzymes in the mutant may be an important factor making difficult the photo-inactivation of Chl, and thus, increasing the content of Chl, especially Chl b. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Photosynthetic characteristics and antioxidant enzyme system in high-chlorophyll rice Gc mutant

Loading next page...
 
/lp/springer_journal/photosynthetic-characteristics-and-antioxidant-enzyme-system-in-high-0vwws8Dxev
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2012 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443712050123
Publisher site
See Article on Publisher Site

Abstract

The physiological photosynthetic characteristics and antioxidant enzyme system of the high-chlorophyll rice (Oryza sativa L.) mutant (Gc) and its wild type (Zhenshan 97B) were compared and analyzed. Resulting data showed that the total chlorophyll (Chl) and Chl b contents in the Gc mutant were significantly increased by 19.0 and 81.7%, respectively, while the increase in Chl a and thylakoid membrane protein contents was insignificant. The net photosynthetic rate (P N) was significantly higher in the mutant; stomatal conductance, intercellular CO2 concentration, and transpiration rate decreased significantly, and water-use efficiency increased significantly, indicating the higher photochemical efficiency of the mutant. The chlorophyll fluorescence parameters: electron transport rate and effective quantum yield of PSII photochemistry of the mutant were significantly higher than those of Zhenshan 97B. The nonphotochemical quenching of the mutant under light adaptation increased by 52.3%. The enzymatic activity of superoxide dismutase, peroxidas, and catalase in the mutant roots and leaves were all higher than those for the wild-type plants. It is believed that the higher activity of antioxidant enzymes in the mutant may be an important factor making difficult the photo-inactivation of Chl, and thus, increasing the content of Chl, especially Chl b.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Aug 16, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off