Photoperiodic and Hormonal Control of Tuberization in Potato Plants Transformed with the PHYB Gene from Arabidopsis

Photoperiodic and Hormonal Control of Tuberization in Potato Plants Transformed with the PHYB... We studied photoperiodic and hormonal regulation of tuberization in wild-type potato (Solanum tuberosum L., cv, Desiree) plants and derivative transgenic plants harboring the PHYB gene from Arabidopsis, which encodes the phytochrome B apoprotein, under the control of the cauliflower mosaic virus 35S promoter. Plants were cultured on hormone-free Murashige and Skoog nutrient medium containing 5% sucrose or on the same medium supplemented with 1 mg/l kinetin under conditions of long day (LD, 16 h), short day (SD, 10 h), or SD with interrupted long night. We estimated cytokinins (zeatin and zeatin riboside) in underground and aboveground plant organs by the ELISA technique and GA activity in a bioassay with dwarf pea seedlings. Under LD conditions, transgenic plants produced substantially less tubers than wild-type plants. Kinetin addition to the culturing medium resulted in stimulation of tuberization under LD conditions, especially pronounced in the PHYB plants. The content of cytokinins and the activity of GA were much higher under LD conditions, especially in leaves. The total level of both phytohormones was higher in transformed as compared to wild-type plants. A relation of phytochrome-dependent tuberization to the hormonal status of underground and above-ground plant organs and possible reasons for kinetin stimulatory effect on this process are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Photoperiodic and Hormonal Control of Tuberization in Potato Plants Transformed with the PHYB Gene from Arabidopsis

Loading next page...
 
/lp/springer_journal/photoperiodic-and-hormonal-control-of-tuberization-in-potato-plants-TsjaTad5w0
Publisher
Springer Journals
Copyright
Copyright © 2005 by MAIK "Nauka/Interperiodica"
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1007/s11183-005-0092-8
Publisher site
See Article on Publisher Site

Abstract

We studied photoperiodic and hormonal regulation of tuberization in wild-type potato (Solanum tuberosum L., cv, Desiree) plants and derivative transgenic plants harboring the PHYB gene from Arabidopsis, which encodes the phytochrome B apoprotein, under the control of the cauliflower mosaic virus 35S promoter. Plants were cultured on hormone-free Murashige and Skoog nutrient medium containing 5% sucrose or on the same medium supplemented with 1 mg/l kinetin under conditions of long day (LD, 16 h), short day (SD, 10 h), or SD with interrupted long night. We estimated cytokinins (zeatin and zeatin riboside) in underground and aboveground plant organs by the ELISA technique and GA activity in a bioassay with dwarf pea seedlings. Under LD conditions, transgenic plants produced substantially less tubers than wild-type plants. Kinetin addition to the culturing medium resulted in stimulation of tuberization under LD conditions, especially pronounced in the PHYB plants. The content of cytokinins and the activity of GA were much higher under LD conditions, especially in leaves. The total level of both phytohormones was higher in transformed as compared to wild-type plants. A relation of phytochrome-dependent tuberization to the hormonal status of underground and above-ground plant organs and possible reasons for kinetin stimulatory effect on this process are discussed.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Sep 28, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off