Photomineralization of phenol on Al2O3: synergistic photocatalysis by semiconductors

Photomineralization of phenol on Al2O3: synergistic photocatalysis by semiconductors Phenol gets adsorbed on Al2O3 and mineralizes under UV light in the presence of dissolved O2. The degradation exhibits first-order kinetics and its rate increases linearly with the light intensity and decreases with pH. 2,4-Diphenoxycyclohexanone and 2,6-diphenoxycyclohex-3-ene-1-ol are the intermediates of the reaction. While particulate TiO2, ZnO, ZnS, Fe2O3, CuO, CdO, and Nb2O5 individually photocatalyze the degradation, each semiconductor exhibits synergistic photocatalysis, an enhanced photodegradation, when present along with Al2O3, indicating electron abstraction by illuminated semiconductors from the phenol adsorbed on Al2O3. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Photomineralization of phenol on Al2O3: synergistic photocatalysis by semiconductors

Loading next page...
 
/lp/springer_journal/photomineralization-of-phenol-on-al2o3-synergistic-photocatalysis-by-dTa4wdKzFU
Publisher
Springer Netherlands
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry ; Physical Chemistry ; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-010-0146-1
Publisher site
See Article on Publisher Site

Abstract

Phenol gets adsorbed on Al2O3 and mineralizes under UV light in the presence of dissolved O2. The degradation exhibits first-order kinetics and its rate increases linearly with the light intensity and decreases with pH. 2,4-Diphenoxycyclohexanone and 2,6-diphenoxycyclohex-3-ene-1-ol are the intermediates of the reaction. While particulate TiO2, ZnO, ZnS, Fe2O3, CuO, CdO, and Nb2O5 individually photocatalyze the degradation, each semiconductor exhibits synergistic photocatalysis, an enhanced photodegradation, when present along with Al2O3, indicating electron abstraction by illuminated semiconductors from the phenol adsorbed on Al2O3.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jun 12, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off