Photoinduced electron transfer between adamantanamine-(OCH2CH2) n -phenothiazine and mono-6-p-nitrobenzoyl-β-cyclodextrin

Photoinduced electron transfer between adamantanamine-(OCH2CH2) n -phenothiazine and... A series of adamantanamine-(OCH2CH2) n -phenothiazine (n = 0, 1, 2, 3) electron donors was synthesized. Photoinduced electron transfer was observed in the supramolecular complex of the phenothiazine derivatives with p-nitrobenzoyl-β-cyclodextrin (NBCD) through binding of the adamantyl group by the NBCD cavity, which is stabilized clearly via hydrophobic interactions in aqueous solution. Detailed Stern–Volmer constants were measured and they were partitioned into dynamic Stern–Volmer quenching constants and static binding constants. The results revealed an efficient electron transfer process inside the supramolecular systems compared to that controlled by diffusion. This observation also indicates that the chain length will influence the electron transfer efficiency of a supramolecular donor–acceptor system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Photoinduced electron transfer between adamantanamine-(OCH2CH2) n -phenothiazine and mono-6-p-nitrobenzoyl-β-cyclodextrin

Loading next page...
 
/lp/springer_journal/photoinduced-electron-transfer-between-adamantanamine-och2ch2-n-W574HeoLFj
Publisher
Springer Journals
Copyright
Copyright © 2005 by VSP
Subject
Chemistry; Inorganic Chemistry; Physical Chemistry; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856705774576245
Publisher site
See Article on Publisher Site

Abstract

A series of adamantanamine-(OCH2CH2) n -phenothiazine (n = 0, 1, 2, 3) electron donors was synthesized. Photoinduced electron transfer was observed in the supramolecular complex of the phenothiazine derivatives with p-nitrobenzoyl-β-cyclodextrin (NBCD) through binding of the adamantyl group by the NBCD cavity, which is stabilized clearly via hydrophobic interactions in aqueous solution. Detailed Stern–Volmer constants were measured and they were partitioned into dynamic Stern–Volmer quenching constants and static binding constants. The results revealed an efficient electron transfer process inside the supramolecular systems compared to that controlled by diffusion. This observation also indicates that the chain length will influence the electron transfer efficiency of a supramolecular donor–acceptor system.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Nov 1, 2005

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off