Photoinduced charge separation of phenothiazine–platinum–naphthalene diimide triads linked by twisted phenylene bridges

Photoinduced charge separation of phenothiazine–platinum–naphthalene diimide triads linked by... Two triads (i.e., 3PTZ–Pt–MNDI and 10PTZ–Pt–MNDI) consisting of 3-phenothiazine (3PTZ) or 10-phenothiazine (10PTZ), bipyridine–diacetylide platinum complex (Pt), and naphthalene diimide (MNDI) chromophores linked by highly twisted biphenylene spacers have been prepared. The formation and decay of the charge-separated (CS) states in toluene were studied by use of picosecond and nanosecond laser photolysis via selective excitation of the Pt moiety. The time required for formation of the CS state, PTZ+–Pt–MNDI−, from PTZ–3Pt*–MNDI was determined to be τ CS = 280 ps for 3PTZ+–Pt–MNDI− and τ CS = 230 ps for 10PTZ+–Pt–MNDI−. The lifetimes of the CS states were determined to be τ CR1 = 75 ns (95 %) and τ CR2 = 285 ns (5 %) for 3PTZ+–Pt–MNDI− and τ CR = 830 ns for 10PTZ+–Pt–MNDI−. Formation and decay of the CS states are discussed in terms the Marcus theory and the spin-correlated radical pair mechanism. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Photoinduced charge separation of phenothiazine–platinum–naphthalene diimide triads linked by twisted phenylene bridges

Loading next page...
 
/lp/springer_journal/photoinduced-charge-separation-of-phenothiazine-platinum-naphthalene-LT0O0J3NSL
Publisher
Springer Netherlands
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-012-0642-6
Publisher site
See Article on Publisher Site

Abstract

Two triads (i.e., 3PTZ–Pt–MNDI and 10PTZ–Pt–MNDI) consisting of 3-phenothiazine (3PTZ) or 10-phenothiazine (10PTZ), bipyridine–diacetylide platinum complex (Pt), and naphthalene diimide (MNDI) chromophores linked by highly twisted biphenylene spacers have been prepared. The formation and decay of the charge-separated (CS) states in toluene were studied by use of picosecond and nanosecond laser photolysis via selective excitation of the Pt moiety. The time required for formation of the CS state, PTZ+–Pt–MNDI−, from PTZ–3Pt*–MNDI was determined to be τ CS = 280 ps for 3PTZ+–Pt–MNDI− and τ CS = 230 ps for 10PTZ+–Pt–MNDI−. The lifetimes of the CS states were determined to be τ CR1 = 75 ns (95 %) and τ CR2 = 285 ns (5 %) for 3PTZ+–Pt–MNDI− and τ CR = 830 ns for 10PTZ+–Pt–MNDI−. Formation and decay of the CS states are discussed in terms the Marcus theory and the spin-correlated radical pair mechanism.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jul 10, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off