Photoelectronic behaviors of self-assembled ZnSe/ZnS/L-Cys quantum dots synthesized at low temperature

Photoelectronic behaviors of self-assembled ZnSe/ZnS/L-Cys quantum dots synthesized at low... The photogenerated carriers’ transport and microstructure of self-assembled core–shell ZnSe/ZnS/L-Cys quantum dots (QDs), which was synthesized at room temperature, are studied via the surface photovoltaic and transient photovoltaic techniques, X-ray diffraction, high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy and ultraviolet–visible absorption spectra. The results suggest that the ZnSe nanocrystals prepared at room temperature prefer to nucleate at (111) and (220) faces, and grow a shell–ZnS at (220) face rather than at (311) face. The quantum well depth in some interface space charge region (SCR) of the QDs prepared at room temperature is smaller than that prepared at 90 °C. The evolution of the band bending from a depletion layer to an accumulation layer may occur in the graded-band-gap and at the side of the interface SCR, as compared the QDs with p-type photovoltaic characteristic synthesized at room temperature to that at 90 °C. This electron structural shift may be ascribed to the reduced quantum well depth and then an obvious resonance quantum tunneling of the QDs synthesized at room temperature. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science: Materials in Electronics Springer Journals

Photoelectronic behaviors of self-assembled ZnSe/ZnS/L-Cys quantum dots synthesized at low temperature

Loading next page...
 
/lp/springer_journal/photoelectronic-behaviors-of-self-assembled-znse-zns-l-cys-quantum-YHz25kevZy
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Materials Science; Optical and Electronic Materials; Characterization and Evaluation of Materials
ISSN
0957-4522
eISSN
1573-482X
D.O.I.
10.1007/s10854-017-8395-z
Publisher site
See Article on Publisher Site

Abstract

The photogenerated carriers’ transport and microstructure of self-assembled core–shell ZnSe/ZnS/L-Cys quantum dots (QDs), which was synthesized at room temperature, are studied via the surface photovoltaic and transient photovoltaic techniques, X-ray diffraction, high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy and ultraviolet–visible absorption spectra. The results suggest that the ZnSe nanocrystals prepared at room temperature prefer to nucleate at (111) and (220) faces, and grow a shell–ZnS at (220) face rather than at (311) face. The quantum well depth in some interface space charge region (SCR) of the QDs prepared at room temperature is smaller than that prepared at 90 °C. The evolution of the band bending from a depletion layer to an accumulation layer may occur in the graded-band-gap and at the side of the interface SCR, as compared the QDs with p-type photovoltaic characteristic synthesized at room temperature to that at 90 °C. This electron structural shift may be ascribed to the reduced quantum well depth and then an obvious resonance quantum tunneling of the QDs synthesized at room temperature.

Journal

Journal of Materials Science: Materials in ElectronicsSpringer Journals

Published: Dec 16, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off