Photoelectrochemistry of p-type Cu2O semiconductor electrode in ionic liquid

Photoelectrochemistry of p-type Cu2O semiconductor electrode in ionic liquid We investigated the photoelectrochemical characteristics and photo-stability of Cu2O layered on a copper plate using a hydrophobic ionic liquid. Our findings revealed that Cu2O is stable under white light irradiation, provided water is removed from the electrolyte. Methyl viologen derivative, a well-established electron acceptor, was introduced to the ionic liquid electrolyte, allowing the photo-induced electron transfer reaction at the Cu2O/electrolyte interface to be characterized. The methyl viologen derivative exhibited two distinct redox reactions at −0.56 V and −0.98 V vs. Ag/AgCl, clearly indicating that no dimer formation or co-proportionation reaction occurred. The excessive photocurrents being continuously generated resulted from a viable photo-induced electron transfer reaction from the Cu2O to the acceptor. However, in contrast, the reduction of the Cu2O by water in the aqueous solution causes this electron transfer to be inhibited. We further demonstrate that these findings are vital to understanding the role of the Cu2O and its photoelectrochemical applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Photoelectrochemistry of p-type Cu2O semiconductor electrode in ionic liquid

Loading next page...
 
/lp/springer_journal/photoelectrochemistry-of-p-type-cu2o-semiconductor-electrode-in-ionic-prv0vwAN9k
Publisher
Springer Journals
Copyright
Copyright © 2006 by VSP
Subject
Chemistry; Inorganic Chemistry; Physical Chemistry; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856706777973637
Publisher site
See Article on Publisher Site

Abstract

We investigated the photoelectrochemical characteristics and photo-stability of Cu2O layered on a copper plate using a hydrophobic ionic liquid. Our findings revealed that Cu2O is stable under white light irradiation, provided water is removed from the electrolyte. Methyl viologen derivative, a well-established electron acceptor, was introduced to the ionic liquid electrolyte, allowing the photo-induced electron transfer reaction at the Cu2O/electrolyte interface to be characterized. The methyl viologen derivative exhibited two distinct redox reactions at −0.56 V and −0.98 V vs. Ag/AgCl, clearly indicating that no dimer formation or co-proportionation reaction occurred. The excessive photocurrents being continuously generated resulted from a viable photo-induced electron transfer reaction from the Cu2O to the acceptor. However, in contrast, the reduction of the Cu2O by water in the aqueous solution causes this electron transfer to be inhibited. We further demonstrate that these findings are vital to understanding the role of the Cu2O and its photoelectrochemical applications.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jan 1, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off