Photodynamic processes and the synthesis of 5-aminolevulinic acid in chlorella cells treated with amino acids and 1,10-phenanthroline

Photodynamic processes and the synthesis of 5-aminolevulinic acid in chlorella cells treated with... Treatment of chlorella (Chlorella sp.) cells for 2 h in darkness with tetrapyrrole-dependent photodynamic herbicides (TDPH) derived on the basis of 0.3 mM 1,10-phenanthroline (Ph) combined with 0.6 mM Glu or 0.6 mM Gln induced the accumulation of sensitizers of photodynamic processes: magnesium protoporphyrin IX (MgPP) and MgPP monomethyl ester (MgPPE). Within the first day after chlorella cells treated with TDPH were illuminated, photodestruction of MgPP(E) was observed, and production of the first specific precursor of chlorophyll (Chl), 5-aminolevulinic acid (ALA), in the cells declined. Then the accumulation of ALA was stimulated, and the level of heme, which is a retroinhibitor of ALA synthesis, simultaneously fell. During the first two days of illumination, the content of Chl and carotenoids in the algae treated with TDPH did not differ from their levels in control culture, which suggests a high resistance of photosynthetic pigments to photodynamic process induced by porphyrins. Subsequently, a slight but rising in time accumulation of pheophytin (Pheo) was observed, as well as photodestruction of Chl and carotenoids. After five days of illumination, the difference in the content of Chl between the culture treated with TDPH and control material was 10–30% depending on the illuminance. Chlorella cells treated with TDPH remained capable of producing Chl from exogenous ALA in the dark for at least eight days. In the experiments simultaneously conducted with a higher plant, cucumber (Cucumis sativa L.), which accumulated in the dark essentially the same content of porphyrins in response to TDPH as algae did, the residual level of Chl after five days of illumination was only 10–20% of control plants. It was assumed that a high tolerance of the chlorella pigment pool to photooxidative stress induced by the accumulation of MgPP(E) and Pheo depended on a highly active state of the antioxidant protective system and the ability of ALA molecules additionally formed under the influence of TDPH to be converted into Chl, thereby participating in its de novo synthesis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Photodynamic processes and the synthesis of 5-aminolevulinic acid in chlorella cells treated with amino acids and 1,10-phenanthroline

Loading next page...
 
/lp/springer_journal/photodynamic-processes-and-the-synthesis-of-5-aminolevulinic-acid-in-KcG3oU0Dbj
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2006 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443706060136
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial