Photodegradation of EDTA using Fenton’s reagent: a pilot-scale study

Photodegradation of EDTA using Fenton’s reagent: a pilot-scale study The presence of ethylenediaminetetraacetic acid (EDTA) in decontamination wastes can cause complexation of cations resulting in interferences in their removal by various treatment processes, for example chemical precipitation, ion exchange, etc., and can negatively affect the quality of the final form of the waste. Advanced oxidation processes using ozone, H2O2, ultrasonics (US), ultraviolet (UV) light, Fenton’s reagent (Fe(II) + H2O2), alone or in combination, are regarded as possible methods of clean and ecologically safe remedial treatment for the degradation of organics. In this study, the development of a column photoreactor (15 L) and a shallow-tank photoreactor (100 L) was carried out at the Centralised Waste Management Facility, Kalpakkam, India. Pilot-scale (batch) studies of the photocatalytic degradation of EDTA (20,000 mg/L) using UV + Fenton’s reagent in these reactor geometries were attempted. The effect of the power of the UV radiation on the kinetics of photodegradation of EDTA (20,000 mg/L) was studied using the column photoreactor. The shallow-tank reactor was used to study the photodegradation of EDTA (20,000 mg/L) using UV radiation, visible radiation, and sunlight. The successful use of sunlight as a source of energy and its greater effectiveness than UV radiation in the treatment of EDTA are presented. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Photodegradation of EDTA using Fenton’s reagent: a pilot-scale study

Loading next page...
 
/lp/springer_journal/photodegradation-of-edta-using-fenton-s-reagent-a-pilot-scale-study-TgDh47g8uk
Publisher
Springer Netherlands
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry; Catalysis; Physical Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-011-0303-1
Publisher site
See Article on Publisher Site

Abstract

The presence of ethylenediaminetetraacetic acid (EDTA) in decontamination wastes can cause complexation of cations resulting in interferences in their removal by various treatment processes, for example chemical precipitation, ion exchange, etc., and can negatively affect the quality of the final form of the waste. Advanced oxidation processes using ozone, H2O2, ultrasonics (US), ultraviolet (UV) light, Fenton’s reagent (Fe(II) + H2O2), alone or in combination, are regarded as possible methods of clean and ecologically safe remedial treatment for the degradation of organics. In this study, the development of a column photoreactor (15 L) and a shallow-tank photoreactor (100 L) was carried out at the Centralised Waste Management Facility, Kalpakkam, India. Pilot-scale (batch) studies of the photocatalytic degradation of EDTA (20,000 mg/L) using UV + Fenton’s reagent in these reactor geometries were attempted. The effect of the power of the UV radiation on the kinetics of photodegradation of EDTA (20,000 mg/L) was studied using the column photoreactor. The shallow-tank reactor was used to study the photodegradation of EDTA (20,000 mg/L) using UV radiation, visible radiation, and sunlight. The successful use of sunlight as a source of energy and its greater effectiveness than UV radiation in the treatment of EDTA are presented.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Mar 29, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off