Photochemical generation of reactive intermediates from urban-waste bio-organic substances under UV and solar irradiation

Photochemical generation of reactive intermediates from urban-waste bio-organic substances under... Singlet oxygen (1O2), hydroxyl radicals (•OH), and excited triplet states of organic matter (3OM*) play a key role in the degradation of pollutants in aquatic environments. The formation rates and quantum yields (Φ) of these reactive intermediates (RI) through photosensitized reactions of dissolved organic matter (DOM) have been reported in the literature for decades. Urban biowaste-derived substances (UW-BOS), a form of organic matter derived from vegetative and urban waste, have recently been shown to be efficient sensitizers in the photo-degradation of different contaminants. Nevertheless, no quantitative measurements of photo-oxidant generation by UW-BOS have been reported. In this study, the formation quantum yields of 1O2 and •OH, as well as quantum yield coefficients of TMP degradation (indicative of 3OM* formation), were quantified for two UW-BOS samples, under 254-nm UV radiation or simulated sunlight and compared to a DOM standard from the Suwanee River (SRNOM). Values of Φ for UW-BOS samples ranged from Φ(+1O2) = 8.0 to 8.8 × 10−3, Φ(+•OH) = 4.1 to 4.3 × 10−6, and f TMP = 1.22 to 1.23 × 102 L Einstein−1 under simulated sunlight and from Φ(+1O2) = 1.4 to 2.3 × 10−2, Φ(+•OH) = 1.3 to 3.5 × 10−3, and f TMP = 3.3 to 3.9 × 102 L Einstein−1 under UV. Although UW-BOS are not necessarily better than natural DOM regarding photosensitizing properties, they do sensitize the production of RI and could potentially be used in engineered treatment systems. Environmental Science and Pollution Research Springer Journals

Photochemical generation of reactive intermediates from urban-waste bio-organic substances under UV and solar irradiation

Loading next page...
Springer Berlin Heidelberg
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial