Photochemical and photophosphorylation activities of chloroplasts and leaf mesostructure in Chinese cabbage plants grown under illumination with light-emitting diodes

Photochemical and photophosphorylation activities of chloroplasts and leaf mesostructure in... Leaf mesostructure, photochemical activity, and chloroplast photophosphorylation (PP) in the fourth true leaf of 28-day-old Chinese cabbage (Brassica chinensis L.) plants were investigated. Plants were grown under a light source based on red (650 nm) and blue (470 nm) light-emitting diodes (LED) with red/blue photon flux ratio of 7: 1 and under illumination with high-pressure sodium lamp (HPSL) at photon flux densities of 391 ± 24 μmol/(m2 s) (“normal irradiance”) and 107 ± 9 μmol/(m2 s) (“low irradiance”) in photosynthetically active range. At normal irradiance, the leaf area in plants grown under HPSL was twofold higher than in LED-illuminated plants; other parameters of leaf mesostructure were little affected by spectral quality of incident light. The lowering of growth irradiance reduced the majority of leaf mesostructure parameters in plants grown under illumination with HPSL, whereas in LED-illuminated plants the lowered irradiance reduced only specific leaf weight but increased the leaf thickness and dimensions of mesophyll cells and chloroplasts. The photochemical activity of isolated chloroplasts was almost independent of growth irradiance and light spectral quality. Light quality and intensity used for plant growing had a considerable impact on PP in chloroplasts. At normal light intensity, the highest activity of noncyclic PP in chloroplasts was observed for plants grown under HPSL; at low light intensity the highest rates of PP were noted for plants grown under LED. The P/2e− ratio, which characterizes the degree of PP coupling to electron transport in the chloroplast electron transport chain, showed a similar pattern. Thus, the narrow-band spectrum of the light source had little influence on leaf mesostructure and electron transport rates. However, this spectrum significantly affected the chloroplast PP activity. The PP patterns at low and normal light intensities were opposite for plants grown under LED and HPSL light sources. We suppose that growing plants under LED array at normal light intensity disturbed the chloroplast coupling system, thus preventing the effective use of light energy for ATP synthesis. At low light intensity, chloroplast PP activity was significantly higher under LED illumination, but plant growth was suppressed because of impaired adaptation to low light intensity. Russian Journal of Plant Physiology Springer Journals

Photochemical and photophosphorylation activities of chloroplasts and leaf mesostructure in Chinese cabbage plants grown under illumination with light-emitting diodes

Loading next page...
SP MAIK Nauka/Interperiodica
Copyright © 2010 by Pleiades Publishing, Ltd.
Life Sciences; Plant Sciences ; Plant Physiology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial