Photocatalytic reduction of azo dyes Naphthol Blue Black and Disperse Blue 79

Photocatalytic reduction of azo dyes Naphthol Blue Black and Disperse Blue 79 Photocatalytic reduction of two textile azo dyes, Naphthol Blue Black (NBB) and Disperse Blue 79 (DB79) has been carried out in colloidal WO3 and TiO2 suspensions. Under bandgap excitation of the semiconductor colloids these dyes undergo irreversible reduction as they react with the trapped electrons. The quantum efficiency for the photocatalytic reduction of these dyes were 5.4% and 4.8% for NBB and DB79 respectively. The kinetics and mechanism of the interfacial charge transfer in these colloidal suspension has been elucidated with transient absorption spectroscopy. The reaction between the dye and trapped electrons is diffusion limited and occurs with rate constants of 1.1×108 M−1s−1 and 4.0×107 M−1s−1 for NBB and DB79 respectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Photocatalytic reduction of azo dyes Naphthol Blue Black and Disperse Blue 79

Loading next page...
 
/lp/springer_journal/photocatalytic-reduction-of-azo-dyes-naphthol-blue-black-and-disperse-78yuU50UJw
Publisher
Springer Netherlands
Copyright
Copyright © 1997 by Springer
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856797X00439
Publisher site
See Article on Publisher Site

Abstract

Photocatalytic reduction of two textile azo dyes, Naphthol Blue Black (NBB) and Disperse Blue 79 (DB79) has been carried out in colloidal WO3 and TiO2 suspensions. Under bandgap excitation of the semiconductor colloids these dyes undergo irreversible reduction as they react with the trapped electrons. The quantum efficiency for the photocatalytic reduction of these dyes were 5.4% and 4.8% for NBB and DB79 respectively. The kinetics and mechanism of the interfacial charge transfer in these colloidal suspension has been elucidated with transient absorption spectroscopy. The reaction between the dye and trapped electrons is diffusion limited and occurs with rate constants of 1.1×108 M−1s−1 and 4.0×107 M−1s−1 for NBB and DB79 respectively.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Apr 14, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial