Photocatalytic properties of PbMoO4 synthesized by co-precipitation method: organic dyes degradation under UV irradiation

Photocatalytic properties of PbMoO4 synthesized by co-precipitation method: organic dyes... PbMoO4 molybdate with scheelite structure was synthesized by a simple co-precipitation method. The material was characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), and adsorption–desorption N2 isotherms (BET). The photocatalytic activity of PbMoO4 molybdate was evaluated with the degradation reactions of rhodamine B (rhB), indigo carmine (IC), orange G (OG), and methyl orange (MO) under UV irradiation. In order to elucidate aspects of the degradation mechanism of the organic dyes, some experimental variables were modified such as pH and O2 level in solution. The total organic carbon (TOC) analysis of samples irradiated revealed that mineralization of organic dyes by the action of PbMoO4 was feasible in rhB (60%), IC (80%), and OG (65%) after 96 h of irradiation. For the same time of irradiation, a recalcitrant behavior to the mineralization was observed in MO reaching only a 10% of mineralization degree. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Photocatalytic properties of PbMoO4 synthesized by co-precipitation method: organic dyes degradation under UV irradiation

Loading next page...
 
/lp/springer_journal/photocatalytic-properties-of-pbmoo4-synthesized-by-co-precipitation-pKN4meE0zY
Publisher
Springer Netherlands
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Chemistry; Catalysis; Inorganic Chemistry; Physical Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-011-0420-x
Publisher site
See Article on Publisher Site

Abstract

PbMoO4 molybdate with scheelite structure was synthesized by a simple co-precipitation method. The material was characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), and adsorption–desorption N2 isotherms (BET). The photocatalytic activity of PbMoO4 molybdate was evaluated with the degradation reactions of rhodamine B (rhB), indigo carmine (IC), orange G (OG), and methyl orange (MO) under UV irradiation. In order to elucidate aspects of the degradation mechanism of the organic dyes, some experimental variables were modified such as pH and O2 level in solution. The total organic carbon (TOC) analysis of samples irradiated revealed that mineralization of organic dyes by the action of PbMoO4 was feasible in rhB (60%), IC (80%), and OG (65%) after 96 h of irradiation. For the same time of irradiation, a recalcitrant behavior to the mineralization was observed in MO reaching only a 10% of mineralization degree.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Oct 22, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off