Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Photocatalytic oxidative desulfurization of model oil catalyzed by TiO2 with different crystal structure in the presence of phase transfer catalyst

Photocatalytic oxidative desulfurization of model oil catalyzed by TiO2 with different crystal... The photocatalytic oxidative desulfurization is one of the promising processes to realize the deep desulfurization of the fuel. A series of TiO2 nanoparticles (TiO2 NPs) were prepared to investigate the effect of annealing temperatures on its physical properties and the photocatalytic oxidative desulfurization performance. Their physicochemical properties were investigated by X–ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), thermal gravimetric and differential thermal analysis (TG–DTA), scanning electron microscopy (SEM), and X–ray energy dispersive spectrometer (EDS). The results show that, the crystallite structure of TiO2 NPs annealed at 250–450°C was mainly composed of anatase phase. The rutile phase appeared when the anneal temperature increased to 550°C and all of the anatase converted into rutile phase when annealed at 750°C. The effect of crystallite structure of TiO2 on its photocatalytic oxidative desulfurization performance was investigated using benzothiophene (BT) as the model sulfur compound. The anatase phase was preferable for the photocatalytic oxidation of BT. Phase transfer catalyst plays an important role for improving the photocatalytic desulfurization rate. The photocatalytic oxidative reaction mechanism was also proposed in the presence of TiO2 as catalyst, H2O2 as oxidant, and the DMDAAC as phase transfer catalyst. In the heterogeneous catalytic system, the entire reaction rate is mainly determined by the oxidation reaction and the extraction process, in which the oxidation process could be the rate determining step. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Applied Chemistry Springer Journals

Photocatalytic oxidative desulfurization of model oil catalyzed by TiO2 with different crystal structure in the presence of phase transfer catalyst

Loading next page...
 
/lp/springer_journal/photocatalytic-oxidative-desulfurization-of-model-oil-catalyzed-by-0nMfDPPbbW

References (38)

Publisher
Springer Journals
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Chemistry; Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering
ISSN
1070-4272
eISSN
1608-3296
DOI
10.1134/S1070427216120211
Publisher site
See Article on Publisher Site

Abstract

The photocatalytic oxidative desulfurization is one of the promising processes to realize the deep desulfurization of the fuel. A series of TiO2 nanoparticles (TiO2 NPs) were prepared to investigate the effect of annealing temperatures on its physical properties and the photocatalytic oxidative desulfurization performance. Their physicochemical properties were investigated by X–ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), thermal gravimetric and differential thermal analysis (TG–DTA), scanning electron microscopy (SEM), and X–ray energy dispersive spectrometer (EDS). The results show that, the crystallite structure of TiO2 NPs annealed at 250–450°C was mainly composed of anatase phase. The rutile phase appeared when the anneal temperature increased to 550°C and all of the anatase converted into rutile phase when annealed at 750°C. The effect of crystallite structure of TiO2 on its photocatalytic oxidative desulfurization performance was investigated using benzothiophene (BT) as the model sulfur compound. The anatase phase was preferable for the photocatalytic oxidation of BT. Phase transfer catalyst plays an important role for improving the photocatalytic desulfurization rate. The photocatalytic oxidative reaction mechanism was also proposed in the presence of TiO2 as catalyst, H2O2 as oxidant, and the DMDAAC as phase transfer catalyst. In the heterogeneous catalytic system, the entire reaction rate is mainly determined by the oxidation reaction and the extraction process, in which the oxidation process could be the rate determining step.

Journal

Russian Journal of Applied ChemistrySpringer Journals

Published: Apr 20, 2017

There are no references for this article.