Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Photocatalytic mineralization of chlorinated organic pollutants in water by polyoxometallates. Determination of intermediates and final degradation products

Photocatalytic mineralization of chlorinated organic pollutants in water by polyoxometallates.... Homogeneous aqueous solutions of organochlorine pesticides and chlorophenols, namely, lindane, hexachlorobenzene and 2,4-dichlorophenol (2,4DCP), undergo effective photodegradation upon photolysis with UV and near visible light in the presence of a characteristic polyoxometallate catalyst PW12O40 3−. These substrates remained, practically, intact (lindane, HCB) or underwent minor degradation under similar conditions in absence of catalyst. The main oxidant appears to be OH radicals formed by the reaction of the excited polyoxometallate with H2O. The system compares with the widely published TiO2. Chlorohydroquinone (ClHQ), hydroquinone (HQ), chlorobenzoquinone (ClBQ), benzoquinone (BQ), 3,5-dichlorocatechol (3,5DCC) and 4-chlorocatechol (4CC), among others, were identified as the main aromatic intermediates in the photodegradation of 2,4DCP. Acetic acid was detected as ring cleavage product. In all cases the final photodegradation leads to complete mineralization of substrates to CO2 and HCl. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Photocatalytic mineralization of chlorinated organic pollutants in water by polyoxometallates. Determination of intermediates and final degradation products

Loading next page...
 
/lp/springer_journal/photocatalytic-mineralization-of-chlorinated-organic-pollutants-in-06fd0oXSMY

References (33)

Publisher
Springer Journals
Copyright
Copyright © 2000 by VSP
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
DOI
10.1163/156856700X00750
Publisher site
See Article on Publisher Site

Abstract

Homogeneous aqueous solutions of organochlorine pesticides and chlorophenols, namely, lindane, hexachlorobenzene and 2,4-dichlorophenol (2,4DCP), undergo effective photodegradation upon photolysis with UV and near visible light in the presence of a characteristic polyoxometallate catalyst PW12O40 3−. These substrates remained, practically, intact (lindane, HCB) or underwent minor degradation under similar conditions in absence of catalyst. The main oxidant appears to be OH radicals formed by the reaction of the excited polyoxometallate with H2O. The system compares with the widely published TiO2. Chlorohydroquinone (ClHQ), hydroquinone (HQ), chlorobenzoquinone (ClBQ), benzoquinone (BQ), 3,5-dichlorocatechol (3,5DCC) and 4-chlorocatechol (4CC), among others, were identified as the main aromatic intermediates in the photodegradation of 2,4DCP. Acetic acid was detected as ring cleavage product. In all cases the final photodegradation leads to complete mineralization of substrates to CO2 and HCl.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jan 1, 2000

There are no references for this article.