Photocatalytic mechanisms of modified titania under visible light

Photocatalytic mechanisms of modified titania under visible light Heterogeneous photocatalysis with titania under visible light has increasingly been a focus for research. Metal or non-metal doping, surface sensitization, semiconductor coupling, precious metal deposition and increasing crystal defects have been used to enhance the photocatalytic activity of titania under visible light. Based on the research results of different modification methods in recent years, some mechanisms from the excitation, bulk diffusion and surface transfer of photoinduced charge carriers, such as band gap modification, changing the excitation path, promoting the separation of photogenerated charge carrier, improving the surface adsorption and reaction, and synergistic effects, for photocatalysis under visible light are discussed and the development trend in this field is predicted. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Photocatalytic mechanisms of modified titania under visible light

Loading next page...
 
/lp/springer_journal/photocatalytic-mechanisms-of-modified-titania-under-visible-light-QaUIIn5GDw
Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry ; Physical Chemistry ; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-010-0232-4
Publisher site
See Article on Publisher Site

Abstract

Heterogeneous photocatalysis with titania under visible light has increasingly been a focus for research. Metal or non-metal doping, surface sensitization, semiconductor coupling, precious metal deposition and increasing crystal defects have been used to enhance the photocatalytic activity of titania under visible light. Based on the research results of different modification methods in recent years, some mechanisms from the excitation, bulk diffusion and surface transfer of photoinduced charge carriers, such as band gap modification, changing the excitation path, promoting the separation of photogenerated charge carrier, improving the surface adsorption and reaction, and synergistic effects, for photocatalysis under visible light are discussed and the development trend in this field is predicted.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Dec 29, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off