Photocatalytic degradation of chlorophenols under direct solar radiation in the presence of ZnO catalyst

Photocatalytic degradation of chlorophenols under direct solar radiation in the presence of ZnO... The photocatalytic degradation of chlorophenols was evaluated under direct solar radiation using commercial ZnO catalyst. Effects of several parameters such as a catalyst loading, pH of solution and initial concentration on the degradation process have been investigated. The photocatalytic degradation efficiency of chlorophenols at the optimum value of the parameters was compared under similar experimental conditions. The results of efficiency and mineralization showed the degradation of 2-chlorophenol and 2,4-dichlorophenol compound with the first order kinetic rate and the rate constant decreases as the initial concentration of the chlorophenols increase. However, the rate constant was strongly affected by type of chlorophenols compound present either 2-chlorophenol or 2,4-dichlorophenol. The highest removal of chlorophenols was obtained after 120 min and the final intermediate compounds of chlorophenols degradation are lower molecular weight compound consisting of acetic acid which was analyzed through the HPLC. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Photocatalytic degradation of chlorophenols under direct solar radiation in the presence of ZnO catalyst

Loading next page...
 
/lp/springer_journal/photocatalytic-degradation-of-chlorophenols-under-direct-solar-e6svJ58mYf
Publisher
Springer Netherlands
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-012-0731-6
Publisher site
See Article on Publisher Site

Abstract

The photocatalytic degradation of chlorophenols was evaluated under direct solar radiation using commercial ZnO catalyst. Effects of several parameters such as a catalyst loading, pH of solution and initial concentration on the degradation process have been investigated. The photocatalytic degradation efficiency of chlorophenols at the optimum value of the parameters was compared under similar experimental conditions. The results of efficiency and mineralization showed the degradation of 2-chlorophenol and 2,4-dichlorophenol compound with the first order kinetic rate and the rate constant decreases as the initial concentration of the chlorophenols increase. However, the rate constant was strongly affected by type of chlorophenols compound present either 2-chlorophenol or 2,4-dichlorophenol. The highest removal of chlorophenols was obtained after 120 min and the final intermediate compounds of chlorophenols degradation are lower molecular weight compound consisting of acetic acid which was analyzed through the HPLC.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Aug 2, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off