Photocatalytic degradation kinetics of methyl orange in TiO2–SiO2–NiFe2O4 aqueous suspensions

Photocatalytic degradation kinetics of methyl orange in TiO2–SiO2–NiFe2O4 aqueous suspensions Photocatalytic degradation of methyl orange by TiO2–SiO2–NiFe2O4 suspensions was investigated. Adsorption studies revealed photocatalytic degradation occurred mainly on the surface of the TiO2–SiO2–NiFe2O4. The disappearance of the compound followed the zero-order kinetics according to the Langmuir–Hinshelwood model and the rate constant was 0.0035 mg L−1 min−1. The rate constant depended on the amount of photocatalyst, initial pH, and the presence of additional scavengers. •OH radicals and h+ had important roles in the photocatalytic degradation of methyl orange by TiO2–SiO2–NiFe2O4. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Photocatalytic degradation kinetics of methyl orange in TiO2–SiO2–NiFe2O4 aqueous suspensions

Loading next page...
 
/lp/springer_journal/photocatalytic-degradation-kinetics-of-methyl-orange-in-tio2-sio2-GHQbyVyUzm
Publisher
Springer Netherlands
Copyright
Copyright © 2012 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-012-0901-6
Publisher site
See Article on Publisher Site

Abstract

Photocatalytic degradation of methyl orange by TiO2–SiO2–NiFe2O4 suspensions was investigated. Adsorption studies revealed photocatalytic degradation occurred mainly on the surface of the TiO2–SiO2–NiFe2O4. The disappearance of the compound followed the zero-order kinetics according to the Langmuir–Hinshelwood model and the rate constant was 0.0035 mg L−1 min−1. The rate constant depended on the amount of photocatalyst, initial pH, and the presence of additional scavengers. •OH radicals and h+ had important roles in the photocatalytic degradation of methyl orange by TiO2–SiO2–NiFe2O4.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Dec 14, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off