Photocatalytic behavior of α-Bi2Mo3O12 prepared by the Pechini method: degradation of organic dyes under visible-light irradiation

Photocatalytic behavior of α-Bi2Mo3O12 prepared by the Pechini method: degradation of organic... Nanoparticles of α-Bi2Mo3O12 were prepared by the Pechini method. The process of formation of the bismuth molybdate was followed by simultaneous thermogravimetric and differential thermal analysis (TGA/DTA). Different samples of α-Bi2Mo3O12 were obtained at 400, 450, and 500 °C, and characterized by X-ray powder diffraction (XRD), nitrogen physisorption (BET), and scanning electron microscopy (SEM). When observed by SEM, the morphology of the sample obtained at the lowest temperature consisted of semi-spherical particles with an average diameter of 150 nm. On the other hand, the highest calcination temperature led to the formation of sintered particles of 500–600 nm. The photocatalytic activity of α-Bi2Mo3O12 was tested by photodegradation of the organic dyes rhodamine B (rhB) and indigo carmine (IC) under visible-light irradiation. The bismuth molybdate nanoparticles were able to bleach aqueous solutions of both organic dyes. The sample obtained at 400 °C was the best photocatalyst with half-lives, t 1/2, of 108 and 154 min for rhB and IC, respectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Photocatalytic behavior of α-Bi2Mo3O12 prepared by the Pechini method: degradation of organic dyes under visible-light irradiation

Loading next page...
 
/lp/springer_journal/photocatalytic-behavior-of-bi2mo3o12-prepared-by-the-pechini-method-1uSUxesF29
Publisher
Springer Netherlands
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry ; Physical Chemistry ; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-010-0205-7
Publisher site
See Article on Publisher Site

Abstract

Nanoparticles of α-Bi2Mo3O12 were prepared by the Pechini method. The process of formation of the bismuth molybdate was followed by simultaneous thermogravimetric and differential thermal analysis (TGA/DTA). Different samples of α-Bi2Mo3O12 were obtained at 400, 450, and 500 °C, and characterized by X-ray powder diffraction (XRD), nitrogen physisorption (BET), and scanning electron microscopy (SEM). When observed by SEM, the morphology of the sample obtained at the lowest temperature consisted of semi-spherical particles with an average diameter of 150 nm. On the other hand, the highest calcination temperature led to the formation of sintered particles of 500–600 nm. The photocatalytic activity of α-Bi2Mo3O12 was tested by photodegradation of the organic dyes rhodamine B (rhB) and indigo carmine (IC) under visible-light irradiation. The bismuth molybdate nanoparticles were able to bleach aqueous solutions of both organic dyes. The sample obtained at 400 °C was the best photocatalyst with half-lives, t 1/2, of 108 and 154 min for rhB and IC, respectively.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Nov 23, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off