Photobiosynthesis of isoprene as an example of leaf excretory function in the light of contemporary thermodynamics

Photobiosynthesis of isoprene as an example of leaf excretory function in the light of... Various aspects in photobiosynthesis of isoprene and its release from leaves into the environment are presently well known. The release of isoprene from the cell can be regarded as dissipation of excess energy (entropy). The systemic release of metabolites into the external medium should be considered as a result of cell excretory activity, one of the most important functions of living systems. Energy dissipation terminates the sustained passage of thermodynamic flows and regulates the overall stability of cell stationary condition. These issues are considered in this review from the standpoint of contemporary thermodynamics. It is concluded that the excretory capacity of living cell is based on thermodynamic dissipation of entropy during irreversible processes that provide for stability and sustainable development of the living organism. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Photobiosynthesis of isoprene as an example of leaf excretory function in the light of contemporary thermodynamics

Loading next page...
 
/lp/springer_journal/photobiosynthesis-of-isoprene-as-an-example-of-leaf-excretory-function-WPF6O6ZHlc
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2010 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Sciences ; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443710010012
Publisher site
See Article on Publisher Site

Abstract

Various aspects in photobiosynthesis of isoprene and its release from leaves into the environment are presently well known. The release of isoprene from the cell can be regarded as dissipation of excess energy (entropy). The systemic release of metabolites into the external medium should be considered as a result of cell excretory activity, one of the most important functions of living systems. Energy dissipation terminates the sustained passage of thermodynamic flows and regulates the overall stability of cell stationary condition. These issues are considered in this review from the standpoint of contemporary thermodynamics. It is concluded that the excretory capacity of living cell is based on thermodynamic dissipation of entropy during irreversible processes that provide for stability and sustainable development of the living organism.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Jan 12, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off