Phosphorylation and nitration levels of photosynthetic proteins are conversely regulated by light stress

Phosphorylation and nitration levels of photosynthetic proteins are conversely regulated by light... Using a label-free mass spectrometric approach, we investigated light-induced changes in the distribution of phosphorylated and nitrated proteins within subpopulations of native photosynthetic complexes in the thylakoid membrane of Arabidopsis thaliana leaves adapted to growth light (GL) and subsequently exposed to high light (HL). Eight protein phosphorylation sites were identified in photosystem II (PSII) and the phosphorylation level of seven was regulated by HL as determined based on peak areas from ion chromatograms of phosphorylated and non-phosphorylated peptides. Although the phosphorylation of PSII proteins was reported in the past, we demonstrated for the first time that two minor antenna LHCB4 isoforms are alternately phosphorylated under GL and HL conditions in PSII monomers, dimers and supercomplexes. A role of LHCB4 phosphorylation in state transition and monomerization of PSII under HL conditions is proposed. We determined changes in the nitration level of 23 tyrosine residues in five photosystem I (PSI) and nine PSII proteins and demonstrated for the majority of them a lower nitration level in PSI and PSII complexes and supercomplexes under HL conditions, as compared to GL. In contrast, the nitration level significantly increased in assembled/disassembled PSI and PSII subcomplexes under HL conditions. A possible role of nitration in (1) monomerization of LHCB1-3 trimers under HL conditions (2) binding properties of ferredoxin-NADP+ oxidoreductase to photosystem I, and (3) PSII photodamage and repair cycle, is discussed. Based on these data, we propose that the conversely regulated phosphorylation and nitration levels regulate the stability and turnover of photosynthetic complexes under HL conditions. Plant Molecular Biology Springer Journals

Phosphorylation and nitration levels of photosynthetic proteins are conversely regulated by light stress

Loading next page...
Springer Netherlands
Copyright © 2011 by Springer Science+Business Media B.V.
Life Sciences; Biochemistry, general; Plant Pathology; Plant Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial