Phosphorus–nitrogen compounds part 33: in vitro cytotoxic and antimicrobial activities, DNA interactions, syntheses, and structural investigations of new mono(4-nitrobenzyl)spirocyclotriphosphazenes

Phosphorus–nitrogen compounds part 33: in vitro cytotoxic and antimicrobial activities, DNA... The condensation reactions of hexachlorocyclotriphosphazene, N3P3Cl6, with N-alkyl-N′-mono(4-nitrobenzyl)diamines (1–3), NO2PhCH2NH(CH2) n NHR1 (R1 = CH3 or C2H5), led to the formation of the mono(4-nitrobenzyl)spirocyclotriphosphazenes (4–6). The tetra-pyrrolidino (4a–6a), piperidino (4b–6b), and 1,4-dioxa-8-azaspiro[4,5]decaphosphazenes (4c–6c) were prepared from(for) the reactions of partly substituted compounds (4, 5, and 6) with excess pyrrolidine, piperidine, and 1,4-dioxa-8-azaspiro[4,5]decane (DASD), respectively. The partly substituted geminal (4d and 5d) and cis-morpholino (6d) phosphazenes were isolated from the reactions of excess morpholine in boiling THF and o-xylene, but the expected fully substituted compounds were not obtained. The structures of all the phosphazene derivatives were determined by elemental analyses, MS, FTIR, 1H, 13C{1H}, 31P{1H} NMR, HSQC, and HMBC techniques. The crystal structures of 4, 6, 4a, and 5a were verified by X-ray diffraction analysis. In addition, in vitro cytotoxic activities of fully substituted phosphazenes (4a–6c) against HeLa cervical cancer cell lines (ATCC CCL-2) and the compounds 4a and 4c against breast cancer cell lines (MDA-MB-231) and L929 fibroblast cells were evaluated, respectively. Apoptosis effect was determined by MDA-MB-231 cancer cell lines and fibroblast cells. The MIC values of the compounds were in the ranges of 9.8–19.5 µM. The compounds 6, 5a, 6a, 5b, and 6d have greater MIC activity against bacterial and yeast strain. The investigation of DNA binding with the phosphazenes was studied using plasmid DNA. The phosphazene derivatives inhibit the restriction endonuclease cleavage of plasmid DNA by BamHI and HindIII enzymes. BamHI and HindIII digestion results demonstrate that the compounds bind with G/G and A/A nucleotides. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Phosphorus–nitrogen compounds part 33: in vitro cytotoxic and antimicrobial activities, DNA interactions, syntheses, and structural investigations of new mono(4-nitrobenzyl)spirocyclotriphosphazenes

Loading next page...
 
/lp/springer_journal/phosphorus-nitrogen-compounds-part-33-in-vitro-cytotoxic-and-c2AbZLrImF
Publisher
Springer Netherlands
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-015-2271-3
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial