Phosphorus addition changes belowground biomass and C:N:P stoichiometry of two desert steppe plants under simulated N deposition

Phosphorus addition changes belowground biomass and C:N:P stoichiometry of two desert steppe... Many studies have reported that increasing atmospheric nitrogen (N) deposition broadens N:phosphorus (P) in both soils and plant leaves and potentially intensifies P limitation for plants. However, few studies have tested whether P addition alleviates N-induced P limitation for plant belowground growth. It is also less known how changed N:P in soils and leaves affect plant belowground stoichiometry, which is significant for maintaining key belowground ecological processes. We conducted a multi-level N:P supply experiment (varied P levels combined with constant N amount) for Glycyrrhiza uralensis (a N fixing species) and Pennisetum centrasiaticum (a grass) from a desert steppe in Northwest China during 2011–2013. Results showed that increasing P addition increased the belowground biomass and P concentrations of both species, resulting in the decreases in belowground carbon (C):P and N:P. These results indicate that P inputs alleviated N-induced P limitation and hence stimulated belowground growth. Belowground C:N:P stoichiometry of both species, especially P. centrasiaticum, tightly linked to soil and green leaf C:N:P stoichiometry. Thus, the decoupling of C:N:P ratios in both soils and leaves under a changing climate could directly alter plant belowground stoichiometry, which will in turn have important feedbacks to primary productivity and C sequestration. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

Phosphorus addition changes belowground biomass and C:N:P stoichiometry of two desert steppe plants under simulated N deposition

Loading next page...
 
/lp/springer_journal/phosphorus-addition-changes-belowground-biomass-and-c-n-p-KFhdUaPxiK
Publisher
Nature Publishing Group UK
Copyright
Copyright © 2018 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-018-21565-w
Publisher site
See Article on Publisher Site

Abstract

Many studies have reported that increasing atmospheric nitrogen (N) deposition broadens N:phosphorus (P) in both soils and plant leaves and potentially intensifies P limitation for plants. However, few studies have tested whether P addition alleviates N-induced P limitation for plant belowground growth. It is also less known how changed N:P in soils and leaves affect plant belowground stoichiometry, which is significant for maintaining key belowground ecological processes. We conducted a multi-level N:P supply experiment (varied P levels combined with constant N amount) for Glycyrrhiza uralensis (a N fixing species) and Pennisetum centrasiaticum (a grass) from a desert steppe in Northwest China during 2011–2013. Results showed that increasing P addition increased the belowground biomass and P concentrations of both species, resulting in the decreases in belowground carbon (C):P and N:P. These results indicate that P inputs alleviated N-induced P limitation and hence stimulated belowground growth. Belowground C:N:P stoichiometry of both species, especially P. centrasiaticum, tightly linked to soil and green leaf C:N:P stoichiometry. Thus, the decoupling of C:N:P ratios in both soils and leaves under a changing climate could directly alter plant belowground stoichiometry, which will in turn have important feedbacks to primary productivity and C sequestration.

Journal

Scientific ReportsSpringer Journals

Published: Feb 21, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off