Phosphine-stabilized, oxide-supported rhodium catalysts for highly efficient silylative coupling reactions

Phosphine-stabilized, oxide-supported rhodium catalysts for highly efficient silylative coupling... Oxide-supported rhodium catalysts with excellent activity in silylative coupling reactions have been developed. Reductive pretreatment of the catalysts in the presence of 0.5 equiv triphenylphosphine under a hydrogen atmosphere enhanced and stabilized the catalytic activity. Of the catalysts examined, ceria-supported rhodium had the highest activity in the homo-coupling of vinylsilanes to bis(silyl)ethenes at 170 °C. A zirconia-supported catalyst selectively gave E-1-aryl-2-silylethenes by cross-coupling of vinylsilanes with styrenes at 130 °C, and a high turnover frequency of >8200 h−1 was achieved at 170 °C. Spectroscopic studies revealed that well-dispersed surface rhodium(I) species predominantly formed on ceria or zirconia were transformed into rhodium hydride species, which are believed to be responsible for the high activity. These catalysts were recyclable without loss of activity, and leaching of rhodium species from the catalysts was not observed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Phosphine-stabilized, oxide-supported rhodium catalysts for highly efficient silylative coupling reactions

Loading next page...
 
/lp/springer_journal/phosphine-stabilized-oxide-supported-rhodium-catalysts-for-highly-IGVdaSnx9j
Publisher
Springer Netherlands
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-015-1983-8
Publisher site
See Article on Publisher Site

Abstract

Oxide-supported rhodium catalysts with excellent activity in silylative coupling reactions have been developed. Reductive pretreatment of the catalysts in the presence of 0.5 equiv triphenylphosphine under a hydrogen atmosphere enhanced and stabilized the catalytic activity. Of the catalysts examined, ceria-supported rhodium had the highest activity in the homo-coupling of vinylsilanes to bis(silyl)ethenes at 170 °C. A zirconia-supported catalyst selectively gave E-1-aryl-2-silylethenes by cross-coupling of vinylsilanes with styrenes at 130 °C, and a high turnover frequency of >8200 h−1 was achieved at 170 °C. Spectroscopic studies revealed that well-dispersed surface rhodium(I) species predominantly formed on ceria or zirconia were transformed into rhodium hydride species, which are believed to be responsible for the high activity. These catalysts were recyclable without loss of activity, and leaching of rhodium species from the catalysts was not observed.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Apr 5, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off