Phenotyping of faba beans (Vicia faba L.) under cold and heat stresses using chlorophyll fluorescence

Phenotyping of faba beans (Vicia faba L.) under cold and heat stresses using chlorophyll... Temperature stress including low and high temperature adversely affect the growth, development and productivity of crops. Faba bean (Vicia faba L.) is an important crop as both human food source and animal feed, which contains a range of varieties that are sensitive to cold and heat stresses. In this study, 127 faba bean genotypes were collected from gene banks based on differences in geographical origin. The 127 genotypes were treated by single cold stress (2/2 °C day/night temperature (DT/NT)) and 42 genotypes were treated by either single episode of cold or heat (38/30 °C DT/NT) stress, or a combination of both at photosynthetic photon flux density of 250 µmol m−2 s−1. Chlorophyll fluorescence was used to detect the tolerance of faba beans to low and high temperatures. The maximum quantum efficiency of photosystem II (PSII), Fv/Fm, revealed pronounced differences in cold tolerance among the faba bean genotypes. The 42 genotypes were clustered into four groups according to cold and heat stresses, respectively, and the susceptibilities of faba beans under temperature stress could be distinguished. The combination of cold and heat stresses could aggravate the damage on reproductive organs, but not on the leaves, as indicated by the Fv/Fm. These results confirm that the use of Fv/Fm is a useful approach for detecting low and high temperature damage to photosystem II and to identify tolerant faba bean genotypes, however the results also indicate that the geographical origin of the genotypes could not directly be used to predict climate resilience. These sources of cold- and heat-tolerance could improve the temperature tolerance of faba bean in breeding programs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Euphytica Springer Journals

Phenotyping of faba beans (Vicia faba L.) under cold and heat stresses using chlorophyll fluorescence

Loading next page...
 
/lp/springer_journal/phenotyping-of-faba-beans-vicia-faba-l-under-cold-and-heat-stresses-ktanY2Ne0m
Publisher
Springer Netherlands
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Life Sciences; Plant Sciences; Plant Genetics and Genomics; Plant Pathology; Plant Physiology; Biotechnology
ISSN
0014-2336
eISSN
1573-5060
D.O.I.
10.1007/s10681-018-2154-y
Publisher site
See Article on Publisher Site

Abstract

Temperature stress including low and high temperature adversely affect the growth, development and productivity of crops. Faba bean (Vicia faba L.) is an important crop as both human food source and animal feed, which contains a range of varieties that are sensitive to cold and heat stresses. In this study, 127 faba bean genotypes were collected from gene banks based on differences in geographical origin. The 127 genotypes were treated by single cold stress (2/2 °C day/night temperature (DT/NT)) and 42 genotypes were treated by either single episode of cold or heat (38/30 °C DT/NT) stress, or a combination of both at photosynthetic photon flux density of 250 µmol m−2 s−1. Chlorophyll fluorescence was used to detect the tolerance of faba beans to low and high temperatures. The maximum quantum efficiency of photosystem II (PSII), Fv/Fm, revealed pronounced differences in cold tolerance among the faba bean genotypes. The 42 genotypes were clustered into four groups according to cold and heat stresses, respectively, and the susceptibilities of faba beans under temperature stress could be distinguished. The combination of cold and heat stresses could aggravate the damage on reproductive organs, but not on the leaves, as indicated by the Fv/Fm. These results confirm that the use of Fv/Fm is a useful approach for detecting low and high temperature damage to photosystem II and to identify tolerant faba bean genotypes, however the results also indicate that the geographical origin of the genotypes could not directly be used to predict climate resilience. These sources of cold- and heat-tolerance could improve the temperature tolerance of faba bean in breeding programs.

Journal

EuphyticaSpringer Journals

Published: Mar 14, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial