Phenotypic switching of Escherichia coli cells containing cyclic digenic systems with negative feedback upon changes in cultivation conditions

Phenotypic switching of Escherichia coli cells containing cyclic digenic systems with negative... One of the mechanisms for the epigenetic control of cell phenotypes is based on switching the functioning regimes of bistable gene networks, which can maintain the two alternative levels of gene expression under the same conditions. Cyclic digenic systems with negative feedback represent an example of a simple bistable gene network. Cells carrying artificial cyclic digenic systems on plasmids inherit each alternative phenotype upon exponential growth on rich medium during several cell generations. The action of specific inducers is necessary for switching. In this work, the impact of changes in cell cultivation conditions on the phenotypic composition of the clonal Escherichia coli cell population containing artificial cyclic digenic systems with negative feedback was studied. Phenotypes differ with respect to the expression level of marker proteins: β-galactosidase and GFP. Slow growth on a medium containing little-available carbon sources was shown to cause the transition from the phenotype Lac− to Lac+ in the absence of inducers. Phenotypic switching cannot be explained by transcriptional activation of the lactose operon, because 80 ± 15% of cells inherit the acquired phenotype after replating bacteria on rich medium. Inheritance of the phenotype Lac− in batch culture depends on the medium and duration of cultivation. Dynamics of changes in the activity of β-galactosidase and culture fluorescence suggests that a decrease in the level of metabolism resulted in the switch of these cyclic systems from bistable to monostable functioning regime, which corresponds to the Lac+ phenotype with respect to the ratio of regulatory proteins. Thus, the instability of growth conditions may cause phenotypic heterogeneity in the clonal population of cells containing bistable gene networks. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Phenotypic switching of Escherichia coli cells containing cyclic digenic systems with negative feedback upon changes in cultivation conditions

Loading next page...
 
/lp/springer_journal/phenotypic-switching-of-escherichia-coli-cells-containing-cyclic-SCP28W3H7l
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2010 by Pleiades Publishing, Ltd.
Subject
Biomedicine; Microbial Genetics and Genomics; Animal Genetics and Genomics; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795410050042
Publisher site
See Article on Publisher Site

Abstract

One of the mechanisms for the epigenetic control of cell phenotypes is based on switching the functioning regimes of bistable gene networks, which can maintain the two alternative levels of gene expression under the same conditions. Cyclic digenic systems with negative feedback represent an example of a simple bistable gene network. Cells carrying artificial cyclic digenic systems on plasmids inherit each alternative phenotype upon exponential growth on rich medium during several cell generations. The action of specific inducers is necessary for switching. In this work, the impact of changes in cell cultivation conditions on the phenotypic composition of the clonal Escherichia coli cell population containing artificial cyclic digenic systems with negative feedback was studied. Phenotypes differ with respect to the expression level of marker proteins: β-galactosidase and GFP. Slow growth on a medium containing little-available carbon sources was shown to cause the transition from the phenotype Lac− to Lac+ in the absence of inducers. Phenotypic switching cannot be explained by transcriptional activation of the lactose operon, because 80 ± 15% of cells inherit the acquired phenotype after replating bacteria on rich medium. Inheritance of the phenotype Lac− in batch culture depends on the medium and duration of cultivation. Dynamics of changes in the activity of β-galactosidase and culture fluorescence suggests that a decrease in the level of metabolism resulted in the switch of these cyclic systems from bistable to monostable functioning regime, which corresponds to the Lac+ phenotype with respect to the ratio of regulatory proteins. Thus, the instability of growth conditions may cause phenotypic heterogeneity in the clonal population of cells containing bistable gene networks.

Journal

Russian Journal of GeneticsSpringer Journals

Published: May 20, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off