Phenotypic differentiation of neurons in intraocular transplants

Phenotypic differentiation of neurons in intraocular transplants Neurochemical differentiation of neurons in transplants developing in rat anterior eye chamber was studied. Pieces of the somatosensory neocortex area, isolated from 17-day fetuses of Wistar rats, were used for the transplantation. The general cytological analysis and immunochemical identification of GABAergic neurons in neocortical transplants and in the appropriate brain area of the recipient rats (control) were carried out after 6 months. Cytoarchitectonics typical for neocortex was not revealed in the transplants. Furthermore, a 1.4-fold decrease in numerical density of the entire neuron population was found compared to the control. The proportion of GABAergic nerve cells in the transplanted tissue was reduced even more dramatically— by 13.1 times. The dimensions of all types of neurons, especially GABAergic cells, were greater in the transplants in oculo compared to neocortex in situ. The increase in size occurred mostly due to the cytoplasm. Thus, the nuclei of GABA-positive neurons in the transplants were larger by 1.2 times compared to the control and their perikarya were larger by 1.5 times. The obtained results showed that the conditions in the anterior eye chamber the most dramatically affect the differentiation of GABAergic neurons, and cell hypertrophy, probably, is the functional compensation of the decrease in their number. Considering the literature data on the increased excitability and synchronized neuronal activity in the intraocular transplants, it can be assumed that these transplants can be used as a model for studying the cellular mechanisms of nervous tissue epileptization under disinhibition conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Phenotypic differentiation of neurons in intraocular transplants

Loading next page...
 
/lp/springer_journal/phenotypic-differentiation-of-neurons-in-intraocular-transplants-En3l9hqcuw
Publisher
Pleiades Publishing
Copyright
Copyright © 2016 by Pleiades Publishing, Inc.
Subject
Life Sciences; Developmental Biology; Animal Anatomy / Morphology / Histology
ISSN
1062-3604
eISSN
1608-3326
D.O.I.
10.1134/S1062360416030085
Publisher site
See Article on Publisher Site

Abstract

Neurochemical differentiation of neurons in transplants developing in rat anterior eye chamber was studied. Pieces of the somatosensory neocortex area, isolated from 17-day fetuses of Wistar rats, were used for the transplantation. The general cytological analysis and immunochemical identification of GABAergic neurons in neocortical transplants and in the appropriate brain area of the recipient rats (control) were carried out after 6 months. Cytoarchitectonics typical for neocortex was not revealed in the transplants. Furthermore, a 1.4-fold decrease in numerical density of the entire neuron population was found compared to the control. The proportion of GABAergic nerve cells in the transplanted tissue was reduced even more dramatically— by 13.1 times. The dimensions of all types of neurons, especially GABAergic cells, were greater in the transplants in oculo compared to neocortex in situ. The increase in size occurred mostly due to the cytoplasm. Thus, the nuclei of GABA-positive neurons in the transplants were larger by 1.2 times compared to the control and their perikarya were larger by 1.5 times. The obtained results showed that the conditions in the anterior eye chamber the most dramatically affect the differentiation of GABAergic neurons, and cell hypertrophy, probably, is the functional compensation of the decrease in their number. Considering the literature data on the increased excitability and synchronized neuronal activity in the intraocular transplants, it can be assumed that these transplants can be used as a model for studying the cellular mechanisms of nervous tissue epileptization under disinhibition conditions.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: Jun 2, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off