Phenotypic and functional characterization of T cells in white matter lesions of multiple sclerosis patients

Phenotypic and functional characterization of T cells in white matter lesions of multiple... T cells are considered pivotal in the pathology of multiple sclerosis (MS), but their function and antigen specificity are unknown. To unravel the role of T cells in MS pathology, we performed a comprehensive analysis on T cells recovered from paired blood, cerebrospinal fluid (CSF), normal-appearing white matter (NAWM) and white matter lesions (WML) from 27 MS patients with advanced disease shortly after death. The differentiation status of T cells in these compartments was determined by ex vivo flow cytometry and immunohistochemistry. T-cell reactivity in short-term T-cell lines (TCL), generated by non-specific stimulation of T cells recovered from the same compartments, was determined by intracellular cytokine flow cytometry. Central memory T cells predominated in CSF and effector memory T cells were enriched in NAWM and WML. WML-derived CD8+ T cells represent chronically activated T cells expressing a cytotoxic effector phenotype (CD95L and granzyme B) indicative for local antigenic stimulation (CD137). The same lesions also contained higher CD8+ T-cell frequencies expressing co-inhibitory (TIM3 and PD1) and co-stimulatory (ICOS) T-cell receptors, yet no evidence for T-cell senescence (CD57) was observed. The oligoclonal T-cell receptor (TCR) repertoire, particularly among CD8+ T cells, correlated between TCL generated from anatomically separated WML of the same MS patient, but not between paired NAWM and WML. Whereas no substantial T-cell reactivity was detected towards seven candidate human MS-associated autoantigens (cMSAg), brisk CD8+ T-cell reactivity was detected in multiple WML-derived TCL towards autologous Epstein–Barr virus (EBV) infected B cells (autoBLCL). In one MS patient, the T-cell response towards autoBLCL in paired intra-lesional TCL was dominated by TCRVβ2+CD8+ T cells, which were localized in the parenchyma of the respective tissues expressing a polarized TCR and CD8 expression suggesting immunological synapse formation in situ. Collectively, the data suggest the involvement of effector memory cytotoxic T cells recognizing antigens expressed by autoBLCL, but not the assayed human cMSAg, in WML of MS patients. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Acta Neuropathologica Springer Journals

Phenotypic and functional characterization of T cells in white matter lesions of multiple sclerosis patients

Loading next page...
 
/lp/springer_journal/phenotypic-and-functional-characterization-of-t-cells-in-white-matter-xZbLWcJOlP
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by The Author(s)
Subject
Medicine & Public Health; Pathology; Neurosciences
ISSN
0001-6322
eISSN
1432-0533
D.O.I.
10.1007/s00401-017-1744-4
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial