Phenotypic analysis and molecular cloning of discolored-1 (dsc1), a maize gene required for early kernel development

Phenotypic analysis and molecular cloning of discolored-1 (dsc1), a maize gene required for early... Recessive mutations in the maize dsc1 locus prevent normal kernel development. Solidification of the endosperm in homozygous dsc1− mutant kernels was undetectable 12 days after pollination, at which time the tissue was apparently completely solidified in wild-type kernels. At later times endosperm did solidify in homozygous dsc1− mutant kernels, but there was a marked reduction in the volume of the tissue. Embryo growth in homozygous dsc1− kernels was delayed compared to wild-type kernels, but proceeded to an apparently normal stage 1 in which the scutellum, coleoptile, and shoot apex were clearly defined. Embryo growth then ceased and the embryonic tissues degraded. Late in kernel development no tissue distinctions were obvious in dsc1− mutant embryos. Immature mutant embryos germinated when transplanted from kernels to tissue culture medium prior to embryonic degeneration, but only coleoptile proliferation was observed. The dsc1 gene was isolated by transposon tagging. Analysis of the two different dsc1− mutations confirmed that transposon insertion into the cloned genomic locus was responsible for the observed phenotype. Dsc1 mRNA was detected specifically in kernels 5–7 days after pollination. These data indicate Dsc1 function is required for progression of embryo development beyond a specific stage, and also is required for endosperm development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Phenotypic analysis and molecular cloning of discolored-1 (dsc1), a maize gene required for early kernel development

Loading next page...
 
/lp/springer_journal/phenotypic-analysis-and-molecular-cloning-of-discolored-1-dsc1-a-maize-OWB0306Zpl
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1998 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005998830723
Publisher site
See Article on Publisher Site

Abstract

Recessive mutations in the maize dsc1 locus prevent normal kernel development. Solidification of the endosperm in homozygous dsc1− mutant kernels was undetectable 12 days after pollination, at which time the tissue was apparently completely solidified in wild-type kernels. At later times endosperm did solidify in homozygous dsc1− mutant kernels, but there was a marked reduction in the volume of the tissue. Embryo growth in homozygous dsc1− kernels was delayed compared to wild-type kernels, but proceeded to an apparently normal stage 1 in which the scutellum, coleoptile, and shoot apex were clearly defined. Embryo growth then ceased and the embryonic tissues degraded. Late in kernel development no tissue distinctions were obvious in dsc1− mutant embryos. Immature mutant embryos germinated when transplanted from kernels to tissue culture medium prior to embryonic degeneration, but only coleoptile proliferation was observed. The dsc1 gene was isolated by transposon tagging. Analysis of the two different dsc1− mutations confirmed that transposon insertion into the cloned genomic locus was responsible for the observed phenotype. Dsc1 mRNA was detected specifically in kernels 5–7 days after pollination. These data indicate Dsc1 function is required for progression of embryo development beyond a specific stage, and also is required for endosperm development.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 6, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off