Phage-host associations in a full-scale activated sludge plant during sludge bulking

Phage-host associations in a full-scale activated sludge plant during sludge bulking Sludge bulking, a notorious microbial issue in activated sludge plants, is always accompanied by dramatic changes in the bacterial community. Despite large numbers of phages in sludge systems, their responses to sludge bulking and phage-host associations during bulking are unknown. In this study, high-throughput sequencing of viral metagenomes and bacterial 16S rRNA genes were employed to characterize viral and bacterial communities in a sludge plant under different sludge conditions (sludge volume index (SVI) of 180, 132, and 73 ml/g). Bulking sludges (SVI > 125 ml/g) taken about 10 months apart exhibited similar bacterial and viral composition. This reflects ecological resilience of the sludge microbial community and indicates that changes in viral and bacterial populations correlate closely with each other. Overgrowth of “Candidatus Microthrix parvicella” led to filamentous bulking, but few corresponding viral genotypes were identified. In contrast, sludge viromes were characterized by numerous contigs associated with “Candidatus Accumulibacter phosphatis,” suggesting an abundance of corresponding phages in the sludge viral community. Notably, while nitrifiers (mainly Nitrosomonadaceae and Nitrospiraceae) declined significantly along with sludge bulking, their corresponding viral contigs were identified more frequently and with greater abundance in the bulking viromes, implying that phage-mediated lysis might contribute to the loss of autotrophic nitrifiers under bulking conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Microbiology and Biotechnology Springer Journals

Phage-host associations in a full-scale activated sludge plant during sludge bulking

Loading next page...
 
/lp/springer_journal/phage-host-associations-in-a-full-scale-activated-sludge-plant-during-8PEpvwMxpZ
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Life Sciences; Microbiology; Microbial Genetics and Genomics; Biotechnology
ISSN
0175-7598
eISSN
1432-0614
D.O.I.
10.1007/s00253-017-8429-8
Publisher site
See Article on Publisher Site

Abstract

Sludge bulking, a notorious microbial issue in activated sludge plants, is always accompanied by dramatic changes in the bacterial community. Despite large numbers of phages in sludge systems, their responses to sludge bulking and phage-host associations during bulking are unknown. In this study, high-throughput sequencing of viral metagenomes and bacterial 16S rRNA genes were employed to characterize viral and bacterial communities in a sludge plant under different sludge conditions (sludge volume index (SVI) of 180, 132, and 73 ml/g). Bulking sludges (SVI > 125 ml/g) taken about 10 months apart exhibited similar bacterial and viral composition. This reflects ecological resilience of the sludge microbial community and indicates that changes in viral and bacterial populations correlate closely with each other. Overgrowth of “Candidatus Microthrix parvicella” led to filamentous bulking, but few corresponding viral genotypes were identified. In contrast, sludge viromes were characterized by numerous contigs associated with “Candidatus Accumulibacter phosphatis,” suggesting an abundance of corresponding phages in the sludge viral community. Notably, while nitrifiers (mainly Nitrosomonadaceae and Nitrospiraceae) declined significantly along with sludge bulking, their corresponding viral contigs were identified more frequently and with greater abundance in the bulking viromes, implying that phage-mediated lysis might contribute to the loss of autotrophic nitrifiers under bulking conditions.

Journal

Applied Microbiology and BiotechnologySpringer Journals

Published: Jul 29, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off