Phage display-derived antibody fragments against conserved regions of VacA toxin of Helicobacter pylori

Phage display-derived antibody fragments against conserved regions of VacA toxin of Helicobacter... Infection with Helicobacter pylori may result in the emergence of gastric adenocarcinoma. Among various toxins assisting pathogenesis of H. pylori, the vacuolating cytotoxin A (VacA) is one of the most potent toxins known as the major cause of the peptic ulcer and gastric adenocarcinoma. To isolate single-chain variable fragments (scFvs) against two conserved regions of VacA, we capitalized on the phage display technology and a solution-phase biopanning (SPB). Characterization of scFvs was carried out by enzyme-linked immunosorbent assay (ELISA), immunoblotting, and surface plasmon resonance (SPR). Bioinformatics analyses were also performed in order to characterize the structural and functional properties of the isolated scFvs and the interaction(s) between the isolated antibodies (Ab)-antigen (Ag). After four rounds of biopanning, the positive colonies detected by scFv ELISA were harvested to extract the plasmids and perform sequencing. Of several colonies, three colonies showed high affinity to the VacA1 and two colonies for the VacA2. Further complementary examinations (e.g., sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), western blot, SPR, and flow cytometry) displayed the high affinity and specificity of the isolated scFvs to the VacA. Docking results revealed the interaction of the complementarity- determining regions (CDRs) with the VacA peptide. In conclusion, for the http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Microbiology and Biotechnology Springer Journals

Phage display-derived antibody fragments against conserved regions of VacA toxin of Helicobacter pylori

Loading next page...
 
/lp/springer_journal/phage-display-derived-antibody-fragments-against-conserved-regions-of-DCMdPIBhx0
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Life Sciences; Microbiology; Microbial Genetics and Genomics; Biotechnology
ISSN
0175-7598
eISSN
1432-0614
D.O.I.
10.1007/s00253-018-9068-4
Publisher site
See Article on Publisher Site

Abstract

Infection with Helicobacter pylori may result in the emergence of gastric adenocarcinoma. Among various toxins assisting pathogenesis of H. pylori, the vacuolating cytotoxin A (VacA) is one of the most potent toxins known as the major cause of the peptic ulcer and gastric adenocarcinoma. To isolate single-chain variable fragments (scFvs) against two conserved regions of VacA, we capitalized on the phage display technology and a solution-phase biopanning (SPB). Characterization of scFvs was carried out by enzyme-linked immunosorbent assay (ELISA), immunoblotting, and surface plasmon resonance (SPR). Bioinformatics analyses were also performed in order to characterize the structural and functional properties of the isolated scFvs and the interaction(s) between the isolated antibodies (Ab)-antigen (Ag). After four rounds of biopanning, the positive colonies detected by scFv ELISA were harvested to extract the plasmids and perform sequencing. Of several colonies, three colonies showed high affinity to the VacA1 and two colonies for the VacA2. Further complementary examinations (e.g., sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), western blot, SPR, and flow cytometry) displayed the high affinity and specificity of the isolated scFvs to the VacA. Docking results revealed the interaction of the complementarity- determining regions (CDRs) with the VacA peptide. In conclusion, for the

Journal

Applied Microbiology and BiotechnologySpringer Journals

Published: Jun 3, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off