Personalized News Article Recommendation with Novelty Using Collaborative Filtering Based Rough Set Theory

Personalized News Article Recommendation with Novelty Using Collaborative Filtering Based Rough... Online news article reading has become very popular as the World Wide Web provides an access to variety of news articles from large volume of sources around the world. A key challenge of news portals is to provide articles to the users based on their interest. Personalized news recommendation systems provide news articles to the readers based on their interest rather than presenting articles in order of their occurrences. The effectiveness of news recommendation systems reduces due to lack of user ratings and automated novelty detection. A progressive summary helps a user to monitor changes in news items over a period of time. The automatic detection of novelty in personalized news recommendation system could improve a reader’s search experience by providing news items that add more information’s to already known information’s to the users. This paper presents a rough set based collaborative filtering approach to predict a missing news category rating values of a user, and a new novelty detection approach to improve ranking of novel news items. The proposed approach maximizes the accuracy of the news article recommendation to the user according to their interest. Experimental results show the efficiency of the proposed approach. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mobile Networks and Applications Springer Journals

Personalized News Article Recommendation with Novelty Using Collaborative Filtering Based Rough Set Theory

Loading next page...
 
/lp/springer_journal/personalized-news-article-recommendation-with-novelty-using-gbiOeb01RY
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Engineering; Communications Engineering, Networks; Computer Communication Networks; Electrical Engineering; IT in Business
ISSN
1383-469X
eISSN
1572-8153
D.O.I.
10.1007/s11036-017-0842-9
Publisher site
See Article on Publisher Site

Abstract

Online news article reading has become very popular as the World Wide Web provides an access to variety of news articles from large volume of sources around the world. A key challenge of news portals is to provide articles to the users based on their interest. Personalized news recommendation systems provide news articles to the readers based on their interest rather than presenting articles in order of their occurrences. The effectiveness of news recommendation systems reduces due to lack of user ratings and automated novelty detection. A progressive summary helps a user to monitor changes in news items over a period of time. The automatic detection of novelty in personalized news recommendation system could improve a reader’s search experience by providing news items that add more information’s to already known information’s to the users. This paper presents a rough set based collaborative filtering approach to predict a missing news category rating values of a user, and a new novelty detection approach to improve ranking of novel news items. The proposed approach maximizes the accuracy of the news article recommendation to the user according to their interest. Experimental results show the efficiency of the proposed approach.

Journal

Mobile Networks and ApplicationsSpringer Journals

Published: Mar 28, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off