Peroxidase as a Component of the Signaling Pathway in Potato Cells during Ring Rot Infection

Peroxidase as a Component of the Signaling Pathway in Potato Cells during Ring Rot Infection Changes in the activity of peroxidase, a component of the NADPH oxidase signaling pathway, in potato cells were studied. This activity increased sharply during ring rot pathogenesis. Two mechanisms of peroxidase activation were distinguished. One of them was the enzyme de novo synthesis; it was characteristic of the potato cultivar susceptible to the pathogen. Another mechanism characteristic of the resistant cultivar included not only the enzyme synthesis but also the activation of preexisting enzyme molecules. Bacterial infection and exopolysaccharides secreted by the pathogen induced changes in the pattern of intra- and extracellular peroxidases of the susceptible cultivar. No changes were noted in the peroxidase patterns of the resistant cultivar. A sharp activation of the extracellular peroxidase of R f 15 occurred in the infected or exopolysaccharide-treated cells of the resistant cultivar. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Peroxidase as a Component of the Signaling Pathway in Potato Cells during Ring Rot Infection

Loading next page...
 
/lp/springer_journal/peroxidase-as-a-component-of-the-signaling-pathway-in-potato-cells-ac94BGnTRF
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2004 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/B:RUPP.0000040747.61131.a9
Publisher site
See Article on Publisher Site

Abstract

Changes in the activity of peroxidase, a component of the NADPH oxidase signaling pathway, in potato cells were studied. This activity increased sharply during ring rot pathogenesis. Two mechanisms of peroxidase activation were distinguished. One of them was the enzyme de novo synthesis; it was characteristic of the potato cultivar susceptible to the pathogen. Another mechanism characteristic of the resistant cultivar included not only the enzyme synthesis but also the activation of preexisting enzyme molecules. Bacterial infection and exopolysaccharides secreted by the pathogen induced changes in the pattern of intra- and extracellular peroxidases of the susceptible cultivar. No changes were noted in the peroxidase patterns of the resistant cultivar. A sharp activation of the extracellular peroxidase of R f 15 occurred in the infected or exopolysaccharide-treated cells of the resistant cultivar.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Dec 22, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off