Permeability mapping in porous media by magnetization prepared centric-scan SPRITE

Permeability mapping in porous media by magnetization prepared centric-scan SPRITE The ability of porous media to transmit fluids is commonly referred to as permeability. The concept of permeability is central for hydrocarbon recovery from petroleum reservoirs and for studies of groundwater flow in aquifers. Spatially resolved measurements of permeability are of great significance for fluid dynamics studies. A convenient concept of local Darcy’s law is suggested for parallel flow systems. The product of porosity and mean velocity images in the plane across the average flow direction is directly proportional to permeability. Single Point Ramped Imaging with T 1 Enhancement (SPRITE) permits reliable quantification of local fluid content and flow in porous media. It is particularly advantageous for reservoir rocks characterized by fast magnetic relaxation of a saturating fluid. Velocity encoding using the Cotts pulsed field gradient scheme improves the accuracy of measured flow parameters. The method is illustrated through measurements of 2D permeability maps in a capillary bundle, glass bead packs and composite sandstone samples. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Permeability mapping in porous media by magnetization prepared centric-scan SPRITE

Loading next page...
 
/lp/springer_journal/permeability-mapping-in-porous-media-by-magnetization-prepared-centric-oqplJemqEF
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-010-0923-z
Publisher site
See Article on Publisher Site

Abstract

The ability of porous media to transmit fluids is commonly referred to as permeability. The concept of permeability is central for hydrocarbon recovery from petroleum reservoirs and for studies of groundwater flow in aquifers. Spatially resolved measurements of permeability are of great significance for fluid dynamics studies. A convenient concept of local Darcy’s law is suggested for parallel flow systems. The product of porosity and mean velocity images in the plane across the average flow direction is directly proportional to permeability. Single Point Ramped Imaging with T 1 Enhancement (SPRITE) permits reliable quantification of local fluid content and flow in porous media. It is particularly advantageous for reservoir rocks characterized by fast magnetic relaxation of a saturating fluid. Velocity encoding using the Cotts pulsed field gradient scheme improves the accuracy of measured flow parameters. The method is illustrated through measurements of 2D permeability maps in a capillary bundle, glass bead packs and composite sandstone samples.

Journal

Experiments in FluidsSpringer Journals

Published: Jul 9, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off