Permanent Photodynamic Cholecystokinin 1 Receptor Activation: Dimer-to-Monomer Conversion

Permanent Photodynamic Cholecystokinin 1 Receptor Activation: Dimer-to-Monomer Conversion The G protein-coupled cholecystokinin 1 receptor (CCK1R) is activated permanently by type II photodynamic action (i.e., by singlet oxygen) in the freshly isolated rat pancreatic acini, in contrast to reversible activation by CCK. But how CCK1R is photodynamically activated is not known. Therefore, in the present work, we subjected membrane proteins extracted from isolated rat pancreatic acini to photodynamic action with photosensitiser sulphonated aluminium phthalocyanine (SALPC), and used reducing gel electrophoresis and Western blot to detect possible changes in CCK1R oligomerization status. Photodynamic action (SALPC 1 µM, light 36.7 mW cm− 2 × 10 min) was found to convert dimeric CCK1R nearly quantitatively to monomers. Such conversion was dependent on both irradiance (8.51–36.7 mW cm− 2) and irradiation time (1–20 min). Minimum effective irradiance was found to be 11.1 mW cm− 2 (× 10 min, with SALPC 1 µM), and brief photodynamic action (SALPC 1 µM, 36.7 mW cm− 2 × 1 min) was effective. Whilst CCK stimulation of purified membrane proteins alone had no effect on CCK1R dimer/monomer balance, sub-threshold photodynamic action (SALPC 100 nM, 36.7 mW cm− 2 × 10 min) plus CCK revealed a bell-shaped CCK dose response curve for CCK1R monomerization, which was remarkably similar to the dose response curve for CCK-stimulated amylase secretion in isolated rat pancreatic acini. These two lines of evidence together suggest that during photodynamic CCK1R activation, CCK1R is permanently monomerized, thus providing a unique approach for permanent G protein-coupled receptor (GPCR) activation which has not been achieved before. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cellular and Molecular Neurobiology Springer Journals

Permanent Photodynamic Cholecystokinin 1 Receptor Activation: Dimer-to-Monomer Conversion

Loading next page...
 
/lp/springer_journal/permanent-photodynamic-cholecystokinin-1-receptor-activation-dimer-to-jxlYCdWVGo
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Biomedicine; Neurosciences; Cell Biology; Neurobiology
ISSN
0272-4340
eISSN
1573-6830
D.O.I.
10.1007/s10571-018-0596-3
Publisher site
See Article on Publisher Site

Abstract

The G protein-coupled cholecystokinin 1 receptor (CCK1R) is activated permanently by type II photodynamic action (i.e., by singlet oxygen) in the freshly isolated rat pancreatic acini, in contrast to reversible activation by CCK. But how CCK1R is photodynamically activated is not known. Therefore, in the present work, we subjected membrane proteins extracted from isolated rat pancreatic acini to photodynamic action with photosensitiser sulphonated aluminium phthalocyanine (SALPC), and used reducing gel electrophoresis and Western blot to detect possible changes in CCK1R oligomerization status. Photodynamic action (SALPC 1 µM, light 36.7 mW cm− 2 × 10 min) was found to convert dimeric CCK1R nearly quantitatively to monomers. Such conversion was dependent on both irradiance (8.51–36.7 mW cm− 2) and irradiation time (1–20 min). Minimum effective irradiance was found to be 11.1 mW cm− 2 (× 10 min, with SALPC 1 µM), and brief photodynamic action (SALPC 1 µM, 36.7 mW cm− 2 × 1 min) was effective. Whilst CCK stimulation of purified membrane proteins alone had no effect on CCK1R dimer/monomer balance, sub-threshold photodynamic action (SALPC 100 nM, 36.7 mW cm− 2 × 10 min) plus CCK revealed a bell-shaped CCK dose response curve for CCK1R monomerization, which was remarkably similar to the dose response curve for CCK-stimulated amylase secretion in isolated rat pancreatic acini. These two lines of evidence together suggest that during photodynamic CCK1R activation, CCK1R is permanently monomerized, thus providing a unique approach for permanent G protein-coupled receptor (GPCR) activation which has not been achieved before.

Journal

Cellular and Molecular NeurobiologySpringer Journals

Published: Jun 4, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off