Periodic solution of a Leslie predator–prey system with ratio-dependent and state impulsive feedback control

Periodic solution of a Leslie predator–prey system with ratio-dependent and state impulsive... In this paper, a Leslie predator–prey system with ratio-dependent and state impulsive feedback control is investigated by applying the geometry theory of differential equation. When the economic threshold level is under the positive equilibrium, the existence, uniqueness and orbital asymptotical stability of order-1 periodic solution for the system can be obtained. When the economic threshold level is above the positive equilibrium, and the positive equilibrium is a focus point, sufficient conditions of the existence, uniqueness and orbital asymptotical stability of order-1 periodic solution for the system are also acquired. Furthermore, when the positive equilibrium is an unstable focus point, the existence of order-1 periodic solution of the impulsive system can be obtained within limit cycle of the continuous system. The mathematical results can be verified by numerical simulations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nonlinear Dynamics Springer Journals

Periodic solution of a Leslie predator–prey system with ratio-dependent and state impulsive feedback control

Loading next page...
 
/lp/springer_journal/periodic-solution-of-a-leslie-predator-prey-system-with-ratio-uyeZyuqnfq
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Engineering; Vibration, Dynamical Systems, Control; Classical Mechanics; Mechanical Engineering; Automotive Engineering
ISSN
0924-090X
eISSN
1573-269X
D.O.I.
10.1007/s11071-017-3637-4
Publisher site
See Article on Publisher Site

Abstract

In this paper, a Leslie predator–prey system with ratio-dependent and state impulsive feedback control is investigated by applying the geometry theory of differential equation. When the economic threshold level is under the positive equilibrium, the existence, uniqueness and orbital asymptotical stability of order-1 periodic solution for the system can be obtained. When the economic threshold level is above the positive equilibrium, and the positive equilibrium is a focus point, sufficient conditions of the existence, uniqueness and orbital asymptotical stability of order-1 periodic solution for the system are also acquired. Furthermore, when the positive equilibrium is an unstable focus point, the existence of order-1 periodic solution of the impulsive system can be obtained within limit cycle of the continuous system. The mathematical results can be verified by numerical simulations.

Journal

Nonlinear DynamicsSpringer Journals

Published: Jul 3, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off