Performance of Tail Hedged Portfolio with Third Moment Variation Swap

Performance of Tail Hedged Portfolio with Third Moment Variation Swap The third moment variation of a financial asset return process is defined by the quadratic covariation between the return and square return processes. The skew and fat tail risk of an underlying asset can be hedged using a third moment variation swap under which a predetermined fixed leg and the floating leg of the realized third moment variation are exchanged. The probability density function of the hedged portfolio with the third moment variation swap was examined using a partial differential equation approach. An alternating direction implicit method was used for numerical analysis of the partial differential equation. Under the stochastic volatility and jump diffusion stochastic volatility models, the distributions of the hedged portfolio return are symmetric and have more Gaussian-like thin-tails. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computational Economics Springer Journals

Performance of Tail Hedged Portfolio with Third Moment Variation Swap

Loading next page...
 
/lp/springer_journal/performance-of-tail-hedged-portfolio-with-third-moment-variation-swap-L4biHxBhoq
Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Economics; Economic Theory/Quantitative Economics/Mathematical Methods; Computer Appl. in Social and Behavioral Sciences; Operations Research/Decision Theory; Behavioral/Experimental Economics; Math Applications in Computer Science
ISSN
0927-7099
eISSN
1572-9974
D.O.I.
10.1007/s10614-016-9593-0
Publisher site
See Article on Publisher Site

Abstract

The third moment variation of a financial asset return process is defined by the quadratic covariation between the return and square return processes. The skew and fat tail risk of an underlying asset can be hedged using a third moment variation swap under which a predetermined fixed leg and the floating leg of the realized third moment variation are exchanged. The probability density function of the hedged portfolio with the third moment variation swap was examined using a partial differential equation approach. An alternating direction implicit method was used for numerical analysis of the partial differential equation. Under the stochastic volatility and jump diffusion stochastic volatility models, the distributions of the hedged portfolio return are symmetric and have more Gaussian-like thin-tails.

Journal

Computational EconomicsSpringer Journals

Published: Jun 17, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off