Performance of a probe for measuring turbulent energy and temperature dissipation rates

Performance of a probe for measuring turbulent energy and temperature dissipation rates A probe consisting of four X-wires (a total of eight hot wires operated in constant temperature mode) and two pairs of parallel cold wires (operated in constant current mode) is in principle capable of providing simultaneous data for the instantaneous energy and temperature dissipation rates. To evaluate the performance of this probe, measurements have been made in decaying turbulence downstream of a grid/screen combination. The directly measured mean values of the energy and temperature dissipation rates are compared with those obtained from the streamwise decay rates of the mean turbulent energy and temperature variance. The probe also yields all three fluctuating vorticity components; after applying spatial resolution corrections, their spectra are in close agreement with isotropic calculations over nearly all wavenumbers. Both the vorticity variance and the mean energy dissipation rate exhibit the same power-law decay rate. Transport equations for the mean energy and temperature dissipation rates are satisfied to within ±10%. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Performance of a probe for measuring turbulent energy and temperature dissipation rates

Loading next page...
 
/lp/springer_journal/performance-of-a-probe-for-measuring-turbulent-energy-and-temperature-mdquCFlzca
Publisher
Springer-Verlag
Copyright
Copyright © 2002 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-002-0443-6
Publisher site
See Article on Publisher Site

Abstract

A probe consisting of four X-wires (a total of eight hot wires operated in constant temperature mode) and two pairs of parallel cold wires (operated in constant current mode) is in principle capable of providing simultaneous data for the instantaneous energy and temperature dissipation rates. To evaluate the performance of this probe, measurements have been made in decaying turbulence downstream of a grid/screen combination. The directly measured mean values of the energy and temperature dissipation rates are compared with those obtained from the streamwise decay rates of the mean turbulent energy and temperature variance. The probe also yields all three fluctuating vorticity components; after applying spatial resolution corrections, their spectra are in close agreement with isotropic calculations over nearly all wavenumbers. Both the vorticity variance and the mean energy dissipation rate exhibit the same power-law decay rate. Transport equations for the mean energy and temperature dissipation rates are satisfied to within ±10%.

Journal

Experiments in FluidsSpringer Journals

Published: Aug 5, 2002

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off