Performance Evaluation of Time-Frequency Distributions for ECG Signal Analysis

Performance Evaluation of Time-Frequency Distributions for ECG Signal Analysis The non-stationary and multi-frequency nature of biomedical signal activities makes the use of time-frequency distributions (TFDs) for analysis inevitable. Time-frequency analysis provides simultaneous interpretations in both time and frequency domain enabling comprehensive explanation, presentation and interpretation of electrocardiogram (ECG) signals. The diversity of TFDs and specific properties for each type show the need to determine the best TFD for ECG analysis. In this study, a performance evaluation of five TFDs in term of ECG abnormality detection is presented. The detection criteria based on extracted features from most important ECG signal components (QRS) to detect normal and abnormal cases. This is achieved by estimating its energy concentration magnitude using the TFDs. The TFDs analyse ECG signals in one-minute interval instead of conventional time domain approach that analyses based on beat or frame containing several beats. The MIT-BIH normal sinus rhythm ECG database total records of 18 long-term ECG sampled at 128 Hz have been analysed. The tested TFDs include Dual-Tree Wavelet Transform, Spectrogram, Pseudo Wigner-Ville, Choi-Williams, and Born-Jordan. Each record is divided into one-minute slots, which is not considered previously, and analysed. The sample periods (slots) are randomly selected ten minutes interval for each record. This result with 99.44% detection accuracy for 15,735 ECG beats shows that Choi-Williams distribution is most reliable to be used for heart problem detection especially in automated systems that provide continuous monitoring for long time duration. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Medical Systems Springer Journals

Performance Evaluation of Time-Frequency Distributions for ECG Signal Analysis

Loading next page...
 
/lp/springer_journal/performance-evaluation-of-time-frequency-distributions-for-ecg-signal-r7cA01SrU6
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Medicine & Public Health; Health Informatics; Health Informatics; Statistics for Life Sciences, Medicine, Health Sciences
ISSN
0148-5598
eISSN
1573-689X
D.O.I.
10.1007/s10916-017-0871-8
Publisher site
See Article on Publisher Site

Abstract

The non-stationary and multi-frequency nature of biomedical signal activities makes the use of time-frequency distributions (TFDs) for analysis inevitable. Time-frequency analysis provides simultaneous interpretations in both time and frequency domain enabling comprehensive explanation, presentation and interpretation of electrocardiogram (ECG) signals. The diversity of TFDs and specific properties for each type show the need to determine the best TFD for ECG analysis. In this study, a performance evaluation of five TFDs in term of ECG abnormality detection is presented. The detection criteria based on extracted features from most important ECG signal components (QRS) to detect normal and abnormal cases. This is achieved by estimating its energy concentration magnitude using the TFDs. The TFDs analyse ECG signals in one-minute interval instead of conventional time domain approach that analyses based on beat or frame containing several beats. The MIT-BIH normal sinus rhythm ECG database total records of 18 long-term ECG sampled at 128 Hz have been analysed. The tested TFDs include Dual-Tree Wavelet Transform, Spectrogram, Pseudo Wigner-Ville, Choi-Williams, and Born-Jordan. Each record is divided into one-minute slots, which is not considered previously, and analysed. The sample periods (slots) are randomly selected ten minutes interval for each record. This result with 99.44% detection accuracy for 15,735 ECG beats shows that Choi-Williams distribution is most reliable to be used for heart problem detection especially in automated systems that provide continuous monitoring for long time duration.

Journal

Journal of Medical SystemsSpringer Journals

Published: Nov 29, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off