Performance evaluation of p-cycle based protection methods for provisioning of dynamic multicast sessions in mesh WDM networks

Performance evaluation of p-cycle based protection methods for provisioning of dynamic multicast... Network survivability is crucial to both unicast and multicast traffic. Up to now, extensive research has been done on unicast traffic protection. Recently, due to the rapid growth of multicast applications, such as video-conferencing, high definition television (HDTV), distance learning, and multi-player on-line gaming, the problem of multicast traffic protection has started to draw more research interests. The preconfigured protection cycle (p-cycle) method proposed by Grover offers fast speed in restoration (because p-cycles are pre-cross-connected) and high efficiency in resource utilization (because p-cycles protect both on-cycle and straddling links). So far p-cycles based protection approaches have been intensively studied for unicast traffic protection, but have been rarely investigated for multicast traffic. We propose to apply p-cycles to dynamic protection provisioning of multicast traffic, and evaluate the blocking performance in comparison to other existing multicast protection schemes. We consider three different p-cycle based multicasting protection methods, namely dynamic p-cycle (DpC) design, p-cycle based protected working capacity envelope (PWCE) design, and hybrid DpC and PWCE design. We show that p-cycle-based multicast protection approaches offer much better blocking performance, as compared with other existing multicast protection schemes. The main reasons for the much better blocking performance are attributed to the facts that (i) the selection of p-cycles is independent of the routing of the multicast light trees, (ii) there are no path/segment disjoint constraints between the selected p-cycles and the multicast light trees to be protected, (iii) the selected p-cycles are the most efficient p-cycles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Performance evaluation of p-cycle based protection methods for provisioning of dynamic multicast sessions in mesh WDM networks

Loading next page...
 
/lp/springer_journal/performance-evaluation-of-p-cycle-based-protection-methods-for-inVT3PHS0o
Publisher
Springer US
Copyright
Copyright © 2008 by Springer Science+Business Media, LLC
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-008-0124-3
Publisher site
See Article on Publisher Site

Abstract

Network survivability is crucial to both unicast and multicast traffic. Up to now, extensive research has been done on unicast traffic protection. Recently, due to the rapid growth of multicast applications, such as video-conferencing, high definition television (HDTV), distance learning, and multi-player on-line gaming, the problem of multicast traffic protection has started to draw more research interests. The preconfigured protection cycle (p-cycle) method proposed by Grover offers fast speed in restoration (because p-cycles are pre-cross-connected) and high efficiency in resource utilization (because p-cycles protect both on-cycle and straddling links). So far p-cycles based protection approaches have been intensively studied for unicast traffic protection, but have been rarely investigated for multicast traffic. We propose to apply p-cycles to dynamic protection provisioning of multicast traffic, and evaluate the blocking performance in comparison to other existing multicast protection schemes. We consider three different p-cycle based multicasting protection methods, namely dynamic p-cycle (DpC) design, p-cycle based protected working capacity envelope (PWCE) design, and hybrid DpC and PWCE design. We show that p-cycle-based multicast protection approaches offer much better blocking performance, as compared with other existing multicast protection schemes. The main reasons for the much better blocking performance are attributed to the facts that (i) the selection of p-cycles is independent of the routing of the multicast light trees, (ii) there are no path/segment disjoint constraints between the selected p-cycles and the multicast light trees to be protected, (iii) the selected p-cycles are the most efficient p-cycles.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Apr 15, 2008

References

  • A novel fast multicast algorithm with enhanced survivability in WDM optical networks
    Li, J.; Zhang, H.; Zhou, B.; Guo, Y.
  • A novel dynamic multiple ring-based local restoration for point-to-multipoint multicast traffic in WDM mesh networks
    Hwang, I.-S.; Cheng, R.-Y.; Tseng, W.-D.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off