Performance evaluation of ejector expansion combined cooling and power cycles

Performance evaluation of ejector expansion combined cooling and power cycles This paper studies performance characteristics of a basic ejector expansion combined cooling and power cycle (EECCPC) as well as three modified ones. These modified cycles are EECCPC incorporating turbine bleeding, regenerative EECCP cycle, and EECCP cycle incorporating with both turbine bleeding and regeneration. The expansion valve has been replaced by a two-phase ejector-expander in the traditional CCP cycle to improve the first and second-law efficiencies. Furthermore, the exergy destruction for components of the systems as well as the whole systems has been calculated, leading to determination of the main source of irreversibility in different cycles. The results of the exergy analysis reveals that the generator has the major contribution role in the overall losses of the systems. The results also show that the EECCP cycle surpasses the TCCP cycle in terms of thermal and exergy efficiencies. As a matter of fact, the thermal and exergy efficiencies are improved by 6.02, and 5.44%, respectively, throughout this successive modification. At last, sensitivity analysis of different key parameters on performance of the cycles has been investigated. It is shown that one can obtain higher thermal efficiency by increasing of the generator and evaporator temperatures or decreasing of the condenser temperature. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Heat and Mass Transfer Springer Journals

Performance evaluation of ejector expansion combined cooling and power cycles

Loading next page...
 
/lp/springer_journal/performance-evaluation-of-ejector-expansion-combined-cooling-and-power-1AvE0AKARB
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Industrial Chemistry/Chemical Engineering; Thermodynamics
ISSN
0947-7411
eISSN
1432-1181
D.O.I.
10.1007/s00231-017-2034-3
Publisher site
See Article on Publisher Site

Abstract

This paper studies performance characteristics of a basic ejector expansion combined cooling and power cycle (EECCPC) as well as three modified ones. These modified cycles are EECCPC incorporating turbine bleeding, regenerative EECCP cycle, and EECCP cycle incorporating with both turbine bleeding and regeneration. The expansion valve has been replaced by a two-phase ejector-expander in the traditional CCP cycle to improve the first and second-law efficiencies. Furthermore, the exergy destruction for components of the systems as well as the whole systems has been calculated, leading to determination of the main source of irreversibility in different cycles. The results of the exergy analysis reveals that the generator has the major contribution role in the overall losses of the systems. The results also show that the EECCP cycle surpasses the TCCP cycle in terms of thermal and exergy efficiencies. As a matter of fact, the thermal and exergy efficiencies are improved by 6.02, and 5.44%, respectively, throughout this successive modification. At last, sensitivity analysis of different key parameters on performance of the cycles has been investigated. It is shown that one can obtain higher thermal efficiency by increasing of the generator and evaporator temperatures or decreasing of the condenser temperature.

Journal

Heat and Mass TransferSpringer Journals

Published: Apr 3, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off