Performance enhancement for impairment-aware SRLG failure protection in wavelength-routed optical networks

Performance enhancement for impairment-aware SRLG failure protection in wavelength-routed optical... With the increase of size and number of shared risk link groups (SRLGs) in WDM networks, path protection tends to have longer working paths and backup paths due to SRLG-disjoint constraints, which makes physical impairment a major concern in working path and backup path provisioning, particularly in large-sized all optical networks. As a simple and efficient algorithm, the working path first algorithm is often used for path protection against SRLG failures, where the working path is calculated first by using the shortest-path algorithm on the graph, followed by using the SRLG-disjoint shortest path as backup path. Compared with the working path, the backup path calculated after the working path in the working path first algorithm is more vulnerable to physical impairment, since it may be much longer than the working path. As a result, if we reject those connections that cannot meet the physical impairment requirement, with SRLGs the blocking probability of path protection will be much higher. We argue that impairment must be taken into account together with capacity efficiency in a comprehensive way during SRLG-disjoint working path and backup path selection. To solve this problem, we motivate the needs to study physical impairment-aware shared-path protection by considering two policies. Policy I uses two SRLG-disjoint least impairment paths as working path and backup path, respectively, and Policy II tries to benefit from both the shortest path and the least impairment path by choosing them intelligently. Analytical and simulation results show: (1) compared with impairment-unawareness, impairment-aware SRLG failure protection performs much better in terms of blocking probability especially with strong physical impairment constraints; (2) impairment-aware SRLG failure protection can significantly reduce physical-layer blocking probability; and (3) the algorithm based on Policy II achieves a good balance between capacity efficiency and physical impairment requirement. Photonic Network Communications Springer Journals

Performance enhancement for impairment-aware SRLG failure protection in wavelength-routed optical networks

Loading next page...
Springer US
Copyright © 2010 by Springer Science+Business Media, LLC
Computer Science; Characterization and Evaluation of Materials; Electrical Engineering; Computer Communication Networks
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial