Performance and kinetic study on Pd/OMS-2 catalyst for CO catalytic oxidation: effect of preparation method

Performance and kinetic study on Pd/OMS-2 catalyst for CO catalytic oxidation: effect of... Manganese oxide octahedral molecular sieves (OMS-2) synthesized from hydrothermal (H-OMS-2), reflux (R-OMS-2), co-precipitation (C-OMS-2), and solid phase (S-OMS-2) methods were impregnated with palladium and used for CO catalytic oxidation. Preparation methods presented an obvious effect on the morphology and catalytic activity of Pd/OMS-2 catalysts for CO oxidation. The hydrothermal synthesized OMS-2 (Pd/H-OMS-2) exhibited more ordered nanorod structure and higher crystallinity than Pd/R-OMS-2, Pd/C-OMS-2, and Pd/S-OMS-2. Further surface analysis indicated that different preparation methods of synthesizing OMS-2 and the impregnation process followed have a significant effect on the chemical states of Mn and O over the final Pd/OMS-2 products. The kinetics studies showed the trend of apparent activation energy (E a) over different catalysts: Pd/H-OMS-2 (18.19 kJ/mol) < Pd/R-OMS-2 (21.56 kJ/mol) < Pd/C-OMS-2 (22.57 kJ/mol) < Pd/S-OMS-2 (29.44 kJ/mol). Over 99 % of the CO conversion was obtained at 35 °C by the optimal Pd/H-OMS-2 catalyst. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Performance and kinetic study on Pd/OMS-2 catalyst for CO catalytic oxidation: effect of preparation method

Loading next page...
 
/lp/springer_journal/performance-and-kinetic-study-on-pd-oms-2-catalyst-for-co-catalytic-8mc0A0fO6b
Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-016-2743-0
Publisher site
See Article on Publisher Site

Abstract

Manganese oxide octahedral molecular sieves (OMS-2) synthesized from hydrothermal (H-OMS-2), reflux (R-OMS-2), co-precipitation (C-OMS-2), and solid phase (S-OMS-2) methods were impregnated with palladium and used for CO catalytic oxidation. Preparation methods presented an obvious effect on the morphology and catalytic activity of Pd/OMS-2 catalysts for CO oxidation. The hydrothermal synthesized OMS-2 (Pd/H-OMS-2) exhibited more ordered nanorod structure and higher crystallinity than Pd/R-OMS-2, Pd/C-OMS-2, and Pd/S-OMS-2. Further surface analysis indicated that different preparation methods of synthesizing OMS-2 and the impregnation process followed have a significant effect on the chemical states of Mn and O over the final Pd/OMS-2 products. The kinetics studies showed the trend of apparent activation energy (E a) over different catalysts: Pd/H-OMS-2 (18.19 kJ/mol) < Pd/R-OMS-2 (21.56 kJ/mol) < Pd/C-OMS-2 (22.57 kJ/mol) < Pd/S-OMS-2 (29.44 kJ/mol). Over 99 % of the CO conversion was obtained at 35 °C by the optimal Pd/H-OMS-2 catalyst.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Sep 19, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off