Perfect state transfer via quantum probability theory

Perfect state transfer via quantum probability theory The transfer of quantum states plays an important role in quantum information processing. In fact, the transfer of a quantum state from point A to point B with unit fidelity has been the center of attention during the last decades. One of the ways to aim this goal is to transfer a quantum state in a spin chain described by designing a Hamiltonian in which a mirror symmetry with respect to the network center is created. In this paper, we introduce a method based on the spectral distribution of the adjacency matrix and stratifying a spin network, with respect to an arbitrary vertex denoted by o which is called starting vertex (reference vertex), to make perfect quantum state transfer possible between antipodes in the spin network. Then we design the coupling coefficients in a way to create a mirror symmetry in the Hamiltonian with respect to the center of the network. In this method the initial state is encoded on the starting vertex and then it is received at its antipode. There is no need to consider any external control in this approach. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Perfect state transfer via quantum probability theory

Loading next page...
 
/lp/springer_journal/perfect-state-transfer-via-quantum-probability-theory-zyiU0fhPaH
Publisher
Springer US
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-012-0392-9
Publisher site
See Article on Publisher Site

Abstract

The transfer of quantum states plays an important role in quantum information processing. In fact, the transfer of a quantum state from point A to point B with unit fidelity has been the center of attention during the last decades. One of the ways to aim this goal is to transfer a quantum state in a spin chain described by designing a Hamiltonian in which a mirror symmetry with respect to the network center is created. In this paper, we introduce a method based on the spectral distribution of the adjacency matrix and stratifying a spin network, with respect to an arbitrary vertex denoted by o which is called starting vertex (reference vertex), to make perfect quantum state transfer possible between antipodes in the spin network. Then we design the coupling coefficients in a way to create a mirror symmetry in the Hamiltonian with respect to the center of the network. In this method the initial state is encoded on the starting vertex and then it is received at its antipode. There is no need to consider any external control in this approach.

Journal

Quantum Information ProcessingSpringer Journals

Published: Mar 27, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off